검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.11 구독 인증기관·개인회원 무료
        Every engineering decision in radioactive waste management should be based on both technical and economic considerations. Especially, the management of low-level radioactive waste (LLW) is more critical on economic concerns, due to its long-term and continuous nature, which emphasizes the importance of economic analysis. In this study, economic factors for LLW management were discussed with appropriate engineering applications. Two major factors that should be taken into account when assessing economic expectations are the accuracy of the results and its proper balancing with ALARA philosophy (As Low As Reasonably Achievable). The accuracy of the results depends on the correct application of alternatives within a realistic framework of waste processing. This is because the LLW management process involves variables such as component type, physical dimensions, and the monetary value at the processing date. Two commonly used alternatives are the simplified lump sum present worth and levelized annual cost methods, which are based on annual and capital costs. However, these discussions on alternatives not only pertain to the time series value of operational costs but also to future technical advancements, which are crucial for engineers. As new research results on LLW treatment emerge, proper consideration and adoption should be given to technical cost management. As safety is the core value of the entire nuclear industry, the ALARA philosophy should also be considered in the cost management of LLW. The typical cost of exposure in man-rem has ranged from $1,000 to $20,000 over the past decades. However, with increasing concerns about health and international political threats, the cost of man-rem should be subject to stricter criteria, even the balancing of costs and safety concerns is much controverse issue. Throughout the study, the importance of incorporating proper engineering insights into the assessment of technical value for the financial management of LLW was discussed. However, it’s essential to remember that financial management should not be solely assessed based on the size of expenses but rather by evaluating the current financial status, the value of money at the time, and anticipated future costs, considering the specific context and timeframe.
        2.
        2023.11 구독 인증기관·개인회원 무료
        On a global scale, the storage of spent nuclear fuel (SNF) within nuclear power plants (NPP) has become an important research topic due to limited space caused by approaching capacity saturation. SNF have e been collected over decades of NPP operation, coming up to capacity limitation. In case of Korea, every reactor except Saeul 1 and 2 has reached a SNF storage saturation rate of over 75%. One of the most studied methods for enhancing storage capacity efficiency involves increasing storage density using racks with neutron absorbers. Neutron absorbers like borated stainless steel (BSS) are utilized to manage the reactivity of densely stored SNF. However, major challenges of applying BSS are manufacturing hardness from heterogenous microstructure and mechanical property degradation from helium bubble formation. This study suggests that innovative fabrication methods of 3D printing can be good candidate for easier fabrication and better structural integrity of BSS. Directed energy deposition (DED), one of the 3D printing methods have become major candidate method for various alloys. It deposits alloy powder on base melt surface by high intensity laser, similar with welding process. Powder manufacturing is already demonstrated superior performance compared to casting in ASTM-A887, such as increased mechanical properties, owing to its well distributed chemistry of alloy. Moreover, as its original microstructural property, the formation of micro-pores through DED could lead to long-term performance improvements by capturing helium generated from the neutron absorption of boron. The potential for fabricating complex structure is also among the advantages of DED-produced neutron absorbers. Expected challenge on DED application on BSS is lack of printing condition data, because the 3D printing process have to be kept very careful variables of thermal intensity, powder flux and etc. These processes may get through much of trial & error for initial condition approaching. Nonetheless, as a recommendation of improved neutron absorber for efficient SNF pool storage, the concept of 3D printed BSS stands out as an intriguing avenue for research.