검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2009.09 구독 인증기관 무료, 개인회원 유료
        The role of Cl channels in regulatory volume decrease (RVD) in human salivary gland acinar cells was examined using a whole-cell patch clamp technique. Human tissues were obtained from healthy volunteers or from patients with oromaxillofacial tumors. During the measurements, K+-free solutions were employed to eliminate contamination of whole-cell conductance by K+ currents. When the cells were exposed to a 70% hypotonic solution, outward-rectifying currents, which were not observed in the resting state, were found to have significantly increased both in human labial and parotid gland acinar cells. The amplitudes of the currents were reduced in a low CI bath solution. Furthermore, the addition of 100μM 5-Nitro-2- (3-phenyl propylamino) benzoic acid (NPPB) or 100μM 4,4'-diisothio cyanatostilbene-2,2'-disulphonic acid (DIDS), known to partially block Cl channels, significantly inhibited these currents. Its outward-rectifying current profile, shift in reversal potential in a low Cl bath solution and pharmacological properties suggest that this is a Cα2+ independent, volume activated Cl current. We conclude therefore that volume activated Cl channels play a putative role in RVD in human salivary gland acinar cells.
        4,000원
        2.
        2008.12 구독 인증기관 무료, 개인회원 유료
        The sodium bicarbonate cotransporter (NBC) protein is functionally expressed in salivary glands. In this experiment, we examined the role of NBC in HCO₃-formation in human parotid gland acinar cells. Intracellular pH (pHi) was measured in 2'-7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF)-loaded cells. Acetazolamide (0.1 mM) and 4,4'-diisothio cyanatostilbene-2,2'-disulphonic acid (DIDS, 0.5 mM) were used as specific inhibitors of carbonic anhydrase and NBC, respectively. The degree of inhibition was assessed by measuring the pHi recovery rate (△pHi/min) after cell acidification using an ammonium prepulse technique. In control experiments, △pHi/min was 1.40±0.06. Treatment of cells with 0.5 mM DIDS or 0.1 mM acetazolamide significantly reduced △pHi/min to 1.14±0.14 and 0.74±0.15, respectively. Simultaneous application of DIDS and acetazolamide further reduced △pHi/min to 0.47±0.10. Therefore, DIDS and acetazolamide reduced △pHi/min by 19% and 47%, respectively, while simultaneous application of both DIDS and acetazolamide caused a reduction in △pHi/min of 67%. These results suggest that in addition to carbonic anhydrase, NBC also partially contributes to HCO₃- formation in human parotid gland acinar cells.
        4,000원
        3.
        2006.09 구독 인증기관 무료, 개인회원 유료
        Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory mediators including IL-6, LIF and MCP-1, which result in the recruitment of macrophages and phagocytosis of myelin debris. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore the possibility, we stimulated iSC, a rat Schwann cell line, with damaged neuronal cell extracts (DNCE). The stimulation of iSC with DNCE induced the expression of various inflammatory mediators including IL-6, LIF, MCP-1 and iNOS. Studies on the signaling pathway indicate that NF-xB, p38 and JNK activation are required for the DNCE-induced inflammatory gene expression. Furthermore, treatment of either anti-TLR3 neutralizing antibody or ribonuclease inhibited the DNCE-induced proinflammatory gene expression in iSC. In summary, these results suggest that damaged neuronal cells induce inflammatory Schwann cell activation via TLR3, which might be involved in the Wallerian degeneration after a peripheral nerve injury.
        4,000원