Trace analysis of Cd and Pb at surface modified thick film graphite electrode with Bi nanopowder has been carried out using square-wave anodic stripping voltammetry (SWASV) technique. Bi nanopowder synthesized by gas condensation (GC) method showed the size of nm with BET surface area, . For a strong adhesion of the Bi nanopowder onto the screen printed carbon paste electrode, nafion solution was added into Bi-containing suspension. From the SWASV, it was found that the Bi nanopowder electrode exhibited a well-defined responses relating to the oxidations of Cd and Pb. The current peak intensity increased with increasing concentration of Cd and Pb. From the linear relationship between Cd/Pb concentrations and peak current, the sensitivity of the Bi nanopowder electrode was quantitatively estimated. The detection limit of the electrode was estimated to be and for Cd and Pb, respectively, on the basis of the signal-to-noise characteristics (S/N=3) of the response for the solution under a 10 min accumulation.
One of the problems associated with in vitro culture of primordial gern cells (PGCs) is the large loss of cells during the initial period of culture. This study characterized the initial loss and determined the effectiveness of two classes of apoptosis inhibitors, protease inhibitors and antioxidants, on the ability of the porcine PGCs to survive in culture. Results from electron microscopic analysis and in situ DNA fragmentation assay indicated that porcine PGCs rapidly undergo apoptosis when placed in culture. Additionally, \ulcorner2-macroglobulin, a protease inhibitor and cytokine carrier, and N-acetylcysteine, an antioxidant, increased the survival of PGCs in vitro. While other protease inhibitors tested did not affect survival of PGCs, all antioxidants tested improved survival of PGCs (p<0.05). Further results indicated that the beneficial effect of the antioxidants was critical only during the initial period of culture. Finally, it was determined that in short-term culture, in the absence of feeder layer, antioxidants could partially replace the effect(s) of growth factors and reduce apoptosis. Collectively, these results indicate that the addition of \ulcorner2-macroglobulin and antioxidatns can increase the number of PGCs in vitro by suppressing apoptosis.