Diamond/SiC composites were prepared by vacuum silica vapor-phase infiltration of in situ silicon–carbon reaction, and the thermophysical properties of the composites were modulated by controlling diamond graphitizing. The effects of diamond surface state and vacuum silicon infiltration temperature on diamond graphitization were investigated, and the micromorphology, phase composition, and properties of the composites were observed and characterized. The results show that diamond pretreatment can reduce the probability of graphitizing; when the penetration temperature is greater than 1600 °C, the diamond undergoes a graphitizing phase transition and the micro-morphology presents a lamellar shape. The thermal conductivity, density, and flexural strength of the composites increased and then decreased with the increase of penetration temperature in the experimentally designed range of penetration temperature. The variation of thermal expansion coefficients of composites prepared with different penetration temperatures ranged from 0.8 to 3.0 ppm/K when the temperature was between 50 and 400 °C.
This study explores how internal and external factors influence the design and use of marketing performance measurement (MPM) practices in Chinese firms. The results show that a firm’s MPM practice is subject to its characteristics (e.g., marketing dashboard, market orientation, marketing complexity) and its external condition (i.e., market turbulence).
In this letter, the effect of quality factor on center frequency deviation in miniaturized coupled line bandpass filter (BPF) with diagonally end-shorted at their opposite sides and lumped capacitors is theoretically analyzed. The miniaturized BPF of a two-stage structure with two types of quality factors in standard CMOS process was designed and manufactured at 5.5 GHz. The die area of BPF was 1.44×0.41 mm2. The measured center frequency of BPF with a quality factor of 4.9 was deviated from 5.5 GHz to 4.7 GHz. The one with 14.8 was shifted to 5GHz. The theoretical and measured results validate that quality factor influences the center frequency shift of BPF.