검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Drought is one of the environmental factors inhibiting plant productivity and growth, leading to oxidative damage. This study aims to identify the role of sodium hydrosulfide (NaHS) as a hydrogen sulfide (H2S) donor in drought stress tolerance in Brassica napus. Drought-induced stress symptoms appeared eight days after treatment, showing wilted leaves and a significant reduction of leaf water potential. Drought-induced increase of lipid peroxidation was significantly reduced by NaHS application. NaHS-treated plants mitigated stress symptoms under drought conditions by reducing hydrogen peroxide (H2O2) content, confirmed with H2O2 localization in situ. Furthermore, NaHS promotes photosynthetic activity by maintaining chlorophyll and carotenoid content, thereby supporting plant growth under drought conditions. Pyrroline-5-carboxylate and proline contents were significantly increased by drought but further enhanced by NaHS treatment, indicating the important roles of proline accumulation in drought stress tolerance. In conclusion, this study provides valuable insight into the roles of NaHS in alleviating drought stress by reducing oxidative stress and promoting proline accumulation. Therefore, NaHS may serve as an effective strategy to enhance crop production under drought-stress conditions.
        4,000원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to evaluate the efficiency of combining acidification with adsorbents (zeolite and biochar) to mitigate the environmental impacts of pig slurry, focusing on ammonia (NH3) emission and nitrate (NO3 -) leaching. The four treatments were applied: 1) pig slurry (PS) alone as a control, 2) acidified PS (AP), 3) acidified pig slurry with zeolite (APZ), and 4) acidified pig slurry with biochar (APB). The AP mitigates NH3 emission and NO3 - leaching compared to PS alone. Acidification reduced the cumulative NH3 emission and its emission factor by 35.9% and 12.5%, respectively. The APZ and APB increased NH4 +-N concentration, with the highest level in APB, compared to AP. The NH4 + adsorption capacity of APB (0.90 mg g-1) was higher than that of APZ (0.63 mg g-1). The APB and APZ treatments induced less NH3 emission compared to AP. The cumulative NH3 emission was reduced by 12.2% and 27.6% in APZ and APB, respectively, compared to AP treatment. NO3 - leaching began to appear on days 12 and 13, and its peak reached on days 16 and 17, which were later than AP. The cumulative NO3 - leaching decreased by 17.7% and 25.0% in APZ and APB, respectively, compared to AP treatment. These results suggest that combining biochar or zeolite with acidified pig slurry is an effective method to mitigate NH3 emission and NO3 - leaching, with biochar being particularly effective.
        4,000원