우리나라에 등록 된 선박은 2019년 기준 전체 97,623척이다. 그 중 어선이 차지하는 비율은 약 67 %로 65,835척이 등록되어 있 다. 어선의 비율만큼이나 해양사고의 빈도수도 높다. 2020년 기준 전체 사고 3,535건 중 2,331건이 어선에서 발생했다. 즉 국내어선의 안전 성 향상을 위한 여러 제도적 마련이 필요한 실정이다. 본 연구에서는 어선의 안전향상을 위한 다양한 부분 중에서 어선과 관련된 국내외 조종성능에 대한 국내외 평가 규정을 살펴보았다. 또한 상선에 비하여 설계 기준이 명확히 정립되지 않은 어선의 타면적 설계 현황을 살 펴보기 위하여 국내 조업 중인 153척의 어선 타면적 비율를 조사하였다. 그 결과 대다수의 어선이 국제적 기준에 미달하여 타면적을 설계 하고 있음을 통계적으로 확인하였다. 향후 이러한 분석 결과는 국내 어선의 조종성능 향상을 위한 타면적 설계 기준마련을 위한 기초 자 료로 활용하고자 한다.
선박의 안전 확보를 위해 준수해야 하는 IMO 복원성 규칙에는 복원정 곡선(GZ Curve) 등에 관한 내용이 다양하게 규정되어 있다. 이 IMO 복원성 규정에는 다양한 항목의 만족 기준이 제시되고 있으나, 선박을 운항하는 선장에게 선박의 복원성능을 종합적이며, 간편하게 제공할 수 있는 방법은 부재한 상황이다. 이를 위해 본 연구에서는 복원성을 하나의 값으로 표현할 수 있는 지수를 개발하였다. IMO에서 규정한 선박의 6가지 복원성 항목과 대상선박의 적재상황에 따른 복원성 계산결과를 바탕으로 지수산정식이 도출되었다. 또한 개발된 지수산정식을 적용하여 다양한 화물 적재 상황별 복원성 지수(Stability Index)를 계산하였으며, 복원성능의 전반적인 정도를 수치적으로 적절하게 설명할 수 있음을 검증하였다. 이는 선박의 선장에게 복원성 평가하고 판단하는데 도움을 줄 것으로 판단된다.
The methods of celestial navigation to fix the ship position in line with the stars are only applied in the twilight time interval when both the celestial bodies and the horizon apppear simultaneously. This means that these methods cannot be used during the night even if the stars are visible. This paper proposes a novel approach which uses the azimuth of the celestial body in order to establish the great circle equation relating the observed body to the ship position when the celestial bodies appear. In addition, the proposed method does not demand the horizon and sextant equipment as with the previous methods. The key advantage which differentiates this method from previous ones is its ability to determine the ship position during the night when the horizon is invisible. Firstly, the vector calculus is applied to find the mathematical equation for the ship position through analyzing the relationship between the ship position and the great-circle azimuth of the observed body. Secondly, the equation system for the ship position is expanded into a standard system in which the input for the proposed mathematical system are the great-circle azimuth and the coordinates of the observed body. Finally, the numerical technique is also proposed to solve the nonlinear system for the ship position. To verify the validation of this proposed method, a numerical experiment is carried out and the results show that it can be applied well in practice.
IMO는 선박의 조종성능과 복원성능에 관한 국제적 기준 마련에 노력해 왔다. 이러한 움직임은 해상에서의 선박 안전 향상에 기 여하였으며, 선박 연구자가 수행하는 학술적 연구의 방향에도 영향을 미쳤다. 기존의 수행된 선박 조종성능과 조종성능 연구는 각각 그 분야 에서 독립적으로 수행되어 왔다. 두 분야의 상호 관계에 관한 연구는 미비한 실정이다. 이에 본 논문에서는 선박의 조종성능과 복원성능의 상 호 관계를 정량적으로 규명하고자 기초적인 실험 연구를 수행하였다. 각 두 항목을 나타내는 지표로 복원성능은 GM 변화를 사용 하였고, 선 박의 조종성능은 선회성능을 선택하여 이 두 지표의 상호관계에 관해 정량적인 분석을 시도하였다. 이를 위하여 자유 항주 모형선을 이용한 선회 실험을 실시하고, GM변화에 따른 선회 반경 및 선회 중 발생하는 최대 횡경사 각도의 변화를 분석 하였다. 실험 결과 GM에 따른 선회 반경 감소 및 초기 횡경사 증가의 경향이 서로 다르게 나타났다. 이를 이용하여, GM 감소에 따른 선회반경 및 초기 횡경사 변화 예측을 위한 개략적인 경향 추정식을 제안 하였다. 선박은 운항 중 예상하지 못한 원인으로 갑작스럽게 GM이 감소 할 수 있다. 본 논문에서 얻은 실험 결 과는 GM감소량에 따른 선박의 선회반경 및 조타에 의한 횡경사 각도 변화 크기를 개략적으로 추정하기 위한 기초 자료로 활용 될 수 있을 것으로 기대된다.
완도군을 중심으로 한 서남 해안권 해상교통의 수요는 나날이 증가하고 있다. 그러나 이 같이 증가하는 여객과 관광수요에 대응할 수 있는 해상 안전 및 편의 시설 개선을 매우 미흡한 실정이다. 본 연구에서는 완도항 항만수역, 완도권내 통항 항로 그리고 여객선 운항 환경 등에 대한 현황을 조사 분석하였다. 이와 함께 완도권 해상교통을 이용하는 이용자들을 대상으로 여객선 운항 환경 개선에 대한 설문을 수행하 였다. 이를 바탕으로 해당 해역의 항해 위해도를 조사 분석하였으며, 여객선 운항 환경을 개선할 수 있는 제도적 장치 중에서 여객선 운임 체제 개선, 타 시도 지역과 비교를 통항 개선방안 등을 제안하였다. 가장 시급한 문제는 항로상 산재해 있는 어장과 그로 인해 좁아진 항로가 여객선 운항에 가장 큰 위험요소가 됨을 알 수 있었다. 또한 여객선 운영측면에서는 타 지역에 비하여 자동화물비가 비싸 개선이 필요한 것으로 조사되 었다.
The studies on automatic ship collision avoidance system, which have been carried out in the last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation field 3-4 years ago because of the absence of any tool to give other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the automatic ship collision avoidance support system which considers ship's manoeuvrability into it's collision avoidance algorithm. One of the important part in ship collision avoidance system is collision decision module which can calculate collision risk with other ships and act properly to avoid the situation. Many of previous researches are using present ship's dynamic data such as present speed, position and course to calculate collision risk. However when a ship commences avoidance action, the real situation is quite different with one that has been estimated by the ship's initial data due to the ship's manoeuvring characteristic. Therefore it is better to take into account ship's manoeuvring characteristic from the stage of collision decision in ship collision avoidance system. In this study, these effects are included in the developed system. The proposed system are verified its usefulness in numerical simulation environments.
In this paper, a 3m-class free running model ship will be introduced with its manoeuvring performance experiments. The results of turning circle test and zig-zag test will be explained. The developed system are equipped with GPS, main control computer, wireless LAN, IMU (Inertial Measurement Unit), self-propulsion propeller and driving rudder. Its motion can be controlled by RC (Radio Control) and wireless LAN from land based center. Automatic navigation is also available by pre-programmed algorithm. The trajectory of navigation can be acquired by GPS and it provides us with important data for ship's motion control experiments. The results of manoeuvring performance experiment have shown that the developed free running model ship can be used to verify the test of turning circle and zig-zag. For next step, other experimental researches such as ship collision avoidance system and automatic berthing can be considered in the future.
This paper deals with effect of wind forces and moment acting on the training ship SAE NURI. The results of drift angle and counter rudder angle due to wind effect are calculated by using the static equilibrium method especially with nonlinear mathematical expression, and then the critical wind velocity is found out. The given results can be applied directly to T/S SAE NURI in handling under the wind condition and used for merchant ships as a referential tool.