검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2017.08 서비스 종료(열람 제한)
        Bovine mammalian gland has biopotential in therapeutic protein production and could be used as a model in further lactation researches. In this study, we have isolated bovine mammary gland-derived epithelial cells (BMECs) from Korean Holstein dairy cattle and themselves show differential dynamic ability in in-vitro culture. BMECs enables to form lobulo-alveolar structure, express milk production related gene. Functional studies indicated that BMECs secret exogeneous antibacterial fragment-Bovine Lactoferricin B (bLfcin-B), which is inserted in PiggyBac system, and this bioactive fragment inhibits the growths of Escherichia coli and Staphylococcus aureus. These data demonstrated that BMECs open new scope in either bioactive fragment, heading to prevent the spread of mastitis or post-mastitis damage in dairy graze and could be an ideal bioreactor for antibacterial proteins.
        3.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Osteosarcoma (OS) is one of the most common malignant primary bone tumors and NF-κB appears to play a causative role, but the mechanisms are poorly understood. OS is one of the pleomorphic, highly metastasized and invasive neoplasm which is capable to generate osteoid, osteoclast and osteoblast matrix. Its high incidence has been reported in adolescent and children. Cell signal cascade is the pivotal functional mechanism acquired during the differentiation, proliferation, growth and survival of the cells in neoplasm including OS. The major limitation to the success of chemotherapy in OS is the development of multidrug resistance (MDR). Answers to all such queries might come from the knock-in experiments in which the combined approach of miRNAs with NF-κB pathway is put into use. Abnormal miRNAs can modulate several epigenetical switching as a hallmark of number of diseases via different cell signaling. Studies on miRNAs have opened up the new avenues for both the diagnosis and treatment of cancers including OS. Collectively, through the present study an attempt has been made to establish a new systematic approach for the investigation of microRNAs, biophysiological factors and their target pairs with NF-κB to ameliorate oncogenesis with the “bridge between miRNAs and NF- κB”. The application of NF-κB inhibitors in combination with miRNAs is expected to result in a more efficient killing of the cancer stem cells and a slower or less likely recurrence of cancer.
        4.
        2013.08 서비스 종료(열람 제한)
        Mesenchymal stem cells (MSCs) are considered to be attractive approaching in gene or drug delivery for cancer therapeutic strategies. In this study, the ability and feasibility of human bone marrow derived MSCs expressing the cytosine deaminase (CD)/5-Fluorocytosin (5-FC) prodrug was evaluated to target human osteosarcoma cell line Cal-72. At first, the fibroblast-like cells were successfully obtained from human bone marrow and demonstrated that they contained full of stem characteristics by the ability of differentiation into adipocyte/osteocyte and expression of typical mesenchymal markers CD90, CD44, while negative for CD34 and CD133 markers. We established the stable CD-expressing MSCs cell line (CD-MSCs) by transfection of pEGFP-C3 containing cytosine deaminase::uracil phos-phoribosyltransferase (CD::UPRT) gene into MSCs, and confirmed that the manipulated MSCs still remained full characteristics of multipotent cells and shown migration toward human osteosarcoma cancer cells Cal-72 as high as origin MSCs. Based on bystander effect, the therapeutic CD-MSCs significantly augmented the cytotoxicity on cancer cell Cal72 in either direct co-culture or conditioned medium in the presence of 5-FC. Moreover, in osteosarcoma cancer- bearing mice, the therapeutic CD/5-FC MSCs showed the inhibition of tumor growth compared with control mice which was s.c injected with only Cal72. Our findings suggest that these therapeutic CD-MSCs may be suitable and viable cellular vehicles for targeting human osteosarcoma cancer.