Lactic acid bacteria as probiotics are intensively used in human and animal species. These probiotic properties of LABs were variable according to bacterial strain and species. However, there was limited information on probiotic properties of monkey origin LABs. In this study, we investigated the antibacterial activity of monkey and human origin LABs against monkey origin enteric bacteria by the agar disc diffusion test and broth culture inhibition assay. All LABs represented enough tolerance to pepsin (0.3%) and bile acid (pH = 2). To 50% of Clostridium perfringens and 20% of Escherichia coli, monkey origin LABs showed statistically higher antibacterial activity compared to human origin LABs (p < 0.05). Also, distinct antibacterial activity was verified among some bacteria species and strains. Higher antibacterial activity against enteric bacteria except for C. perfringens was verified in Lactobacillus johnsonii strains compared to Lactobacillus reuteri and Lactobacillus salivarius. Statistically different antibacterial activity against C. perfringens was verified among strains within L. reuteri and L. johnsonii. In conclusion, we prove the higher probiotic properties of monkey origin LABs against homogenous enteric bacteria although humans and monkeys were phylogenetically similar species. For non-human primates, homogenous LABs should be used as probiotics, not human origin LABs. Furthermore, it was confirmed among monkey origin LABs, L. johnsonii showed a high antibacterial activity on various enteric pathogenic bacteria and was an appropriate lactic acid strain for inhibiting C. perfringens.
Transforming growth factor (TGF) family is well known to induce the chondrogenic differentiation of mesenchymal stem cells (MSC). However, the precise signal transduction pathways and underlying factors are not well known. Thus the present study aims to evaluate the possible role of C2 domain in the chondrogenic differentiation of human mesenchymal stem cells. To this end, 145 C2 domains in the adenovirus were individually transfected to hMSC, and morphological changes were examined. Among 145 C2 domains, C2 domain of protein kinase C eta (PKCη) was selected as a possible chondrogenic differentiation factor for hMSC. To confirm this possibility, we treated TGFβ3, a well known chondrogenic differentiation factor of hMSC, and examined the increased-expression of glycosaminoglycan (GAG), collagen type II (COL II) as well as PKCη using PT-PCR, immunocytochemistry and Western blot analysis. To further evaluation of C2 domain of PKCη, we examined morphological changes, expressions of GAG and COL II after transfection of PKCη -C2 domain in hMSC. Overexpression of PKCη-C2 domain induced morphological change and increased GAG and COL II expressions. The present results demonstrate that PKCη involves in the TGF-β3-induced chondrogenic differentiation of hMSC, and C2 domain of PKCη has important role in this process.