검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2014.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The Earth is not perfectly spherical and its rotational axis is not fixed in space, and these geophysical and kinematic irregularities work as dominant perturbations in satellite orbit propagation. The International Earth Rotation Service (IERS) provides the Conventions as guidelines for using the Earth’s model and the reference time and coordinate systems defined by the International Astronomical Union (IAU). These guidelines are directly applied to model orbital dynamics of Earth satellites. In the present work, the effects of the latest conventions released in 2010 on orbit propagation are investigated by comparison with cases of applying the previous guidelines, IERS Conventions (2003). All seven major updates are tested, i.e., for the models of the precession/nutation, the geopotential, the ocean tides, the ocean pole tides, the free core nutation, the polar motion, and the solar system ephemeris. The resultant position differences for one week of orbit propagation range from tens of meters for the geopotential model change from EGM96 to EGM2008 to a few mm for the precession/nutation model change from IAU2000 to IAU2006. The along-track differences vary secularly while the cross-track components show periodic variation. However, the radial-track position differences are very small compared with the other components in all cases. These phenomena reflect the variation of the ascending node and the argument of latitude. The reason is that the changed models tested in the current study can be regarded as small fluctuations of the geopotential model from the point of view of orbital dynamics. The ascending node and the argument of latitude are more sensitive to the geopotential than the other elements. This study contributes to understanding of the relation between the Earth’s geophysical properties and orbital motion of satellites as well as satellite-based observations.
        2.
        2013.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Ionosphere is one of the largest error sources when the navigational signals produced by Global Positioning System (GPS) satellites are transmitted. Therefore it is very important to estimate total electron contents (TEC) in ionosphere precisely for navigation, precise positioning and some other applications. When we provide ionospheric TEC values in real-time, its application can be expanded to other areas. In this study we have used data obtained from nine Global Navigation Satellite System (GNSS) reference stations which have been operated by Korea Astronomy and Space Science Institute (KASI) to detect ionospheric TEC over South Korea in real-time. We performed data processing that covers converting 1Hz raw data delivered from GNSS reference stations to Receiver INdependent Exchange (RINEX) format files at intervals of 5 minutes. We also analyzed the elevation angles of GPS satellites, vertical TEC (VTEC) values and their changes.
        3.
        2012.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this study, we compared the precipitable water vapor (PWV) data derived from the radiosonde observation data at Sokcho Observatory and the PWV data at Sokcho Global Positioning System (GPS) Observatory provided by Korea Astronomy and Space Science Institute, for the years of 2006, 2008, 2010, and analyzed the radiosonde seasonal, diurnal bias according to radiosonde sensor types. In the scatter diagram of the daytime and nighttime radiosonde PWV data and the GPS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study. Overall, the tendency that the wet bias of the radiosonde PWV increased as the GPS PWV decreased and the dry bias of the radiosonde PWV increased as the GPS PWV increased. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the nighttime except for 2006 winter, and in comparison for summer, RS92-SGP sensor showed the highest quality.
        4.
        2012.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Kinematic global positioning system precise point positioning (GPS PPP) technology is widely used to the several area such as monitoring of crustal movement and precise orbit determination (POD) using the dual-frequency GPS observations. In this study we developed a kinematic PPP technology and applied 3-pass (forward/backward/forward) filter for the stabilization of the initial state of the parameters to be estimated. For verification of results, we obtained GPS data sets from six international GPS reference stations (ALGO, AMC2, BJFS, GRAZ, IENG and TSKB) and processed in daily basis by using the developed software. As a result, the mean position errors by kinematic PPP showed 0.51 cm in the east-west direction, 0.31 cm in the north-south direction and 1.02 cm in the up-down direction. The root mean square values produced from them were 1.59 cm for the east-west component, 1.26 cm for the south-west component and 2.95 cm for the up-down component.
        5.
        2012.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this study, global positioning system (GPS)-derived precipitable water vapor (PWV) and microwave radiometer(MWR)-measured integrated water vapor (IWV) were compared and their characteristics were analyzed. Comparingthose two quantities for two years from August 2009, we found that GPS PWV estimates were larger than MWR IWV. Theaverage differenceover the entire test period was 1.1 mm and the standard deviation was 1.2 mm. When the discrepanciesbetween GPS PWV and MWR IWV were analyzed depending on season, the average difference was 0.7 mm and 1.9mm in the winter and summer months, respectively. Thus, the average difference was about 2.5 times larger in summerthan that in winter. However, MWR IWV measurements in the winter months were over-estimated than those in the summermonths as the water vapor content got larger. The results of the diurnal analysis showed that MWR IWV was underestimatedin the daytime, showing a difference of 0.8 mm. In the early morning hours, MWR IWV has a tendency to beover-estimated, with a difference of 1.3 mm with respect to GPS PWV.
        7.
        2009.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this paper, relative orbit of Low Earth Orbit satellites is determined using only GPS measurements and the effects of Equatorial Spread-F (ESF), that is one of biggest ionospheric irregularities, are investigated. First, relative orbit determiation process is constructed based on doubly differenced GPS observations. In order to see orbit determination performance, relative orbit of two GRACE satellites is estimated for one month in 2004 when no ESF is observed. The root mean square of the achieved baselines compared with that from K-Band Ranger sensor is about 2 » 3 mm and average of 95% of ambiguities are resolved. Based on this performance, the relative orbit is estimated for two weeks of two difference years, 2003 when there are lots of ESF occurred, and 2004 when only few ESF occurred. For 2003, the averaged baseline error over two weeks is about 15 mm. That is about 4 times larger than the case of 2004 (3.6 mm). Ionospheric status achieved from K-Band Ranging sensor also shows that more Equatorial Spread-F occurred at 2003 than 2004. Investigation on raw observations and screening process revealed that the ionospheric irregualarities caused by Equatorial Spread-F gave significant effects on GPS signal like signal loss or enhancement ionospheric error, From this study, relative orbit determination using GPS observations should consider the effect of Equatorial Spread-F and adjust orbit determination strategy, especially at the time of solar maximum.