A 13-year-old female lion underwent a simple mastectomy for a rapidly growing abdominal mass, confirmed as mammary adenocarcinoma after histopathological examination. Mammary tumors are common in domestic cats but less frequently reported in African lions. This report presents the first documented case of mammary adenocarcinoma in an African lion in South Korea. The mass was successfully excised through stable anesthesia and surgery. This report adds to the limited literature on mammary tumors in large felids and discusses the need for tailored management strategies.
For risk assessment of spent nuclear fuel (SNF) transportation, it is necessary to calculate the damage ratio of SNF rods loaded in the cask. Due to the complexity in the geometry and material properties of SNF, it is impractical to analyze the detailed behavior of every fuel rod and assembly in a single cask model. This study presents a framework for performing cask-level analysis by sequentially simplifying the fuel rods and spent fuel assemblies for fuel damage ratio (FDR) calculation. Using the simplified fuel rod model developed in previous studies, we constructed a CE 16×16 fuel assembly model and presented a methodology to simplify the CE 16×16 assembly model into cuboids. Cask drop analyses were performed to validate the similarity of the detailed CE 16×16 model and the simplified model. Using the proposed simplified models, a procedure for quantifying the bending load and pinch load applied to the fuel rods during the drop impact is presented. The FDR can then be calculated by comparing the quantified loads with their respective failure criteria. Through a case study, the feasibility of the developed framework for systematic and accurate FDR calculation was effectively demonstrated.
온실 내부 환경은 지역에 따라 외부 환경의 영향을 지속적으로 받는다. 본 연구는 몽골, UAE(아부다비), 호 주(퀸슬란드) 등 지역별로 구축된 한국형 스마트 온실의 환경 특성을 비교하고자 수행하였다. 몽골과 아부다비의 온실 모두 내외부 엔탈피 차이가 감소함에 따라 환기율이 증가하였다. 아부다비의 반밀폐형 온실에서는 10시부터 14시까지 평균 내부 기온이 외부 기온보다 약 7-10°C 낮았고 내부 VPD(12mbar)는 외부 VPD(56mbar)보다 4.6 배 낮았는데 이 결과는 포그 시스템 운영과 관련이 있는 것으로 보인다. 퀸즐랜드 온실의 경우, 내부 온도가 외부 온 도보다 11시 기준 약 3.81°C 높았고, 내부 엔탈피와 VPD가 외부 온도보다 높았으며, 내부와 외부의 엔탈피 차이가 증가함에 따라 환기율이 증가하였다. 이 결과로 엔탈피를 낮추는 것은 환기와, VPD를 낮추는 것은 포그 시스템 작 동과 관련이 있는 것을 알 수 있다. 또한, 작물 생육에 적합한 환경 조건을 효과적으로 관리하기 위해 엔탈피와 VPD 기반의 포그, 환기 또는 난방 시스템이 필요하다는 것을 알 수 있다.
The recent release of contaminated water from the Fukushima Daiichi Nuclear Power Plant highlights the need for accurate tritium measurement, particularly near the minimum detectable activity (MDA) of 5 Bq·L−1 set by South Korea’s Nuclear Safety and Security Commission. This study aims to improve low-level tritium measurement accuracy by optimizing the region of interest (ROI) for quench curve determination. These adjustments are crucial for separating tritium signals from background noise. Quench standards were prepared and measured using a liquid scintillation counter (LSC). Three ROIs were analyzed to assess the impact of channel selection on measurement precision: A 20-148 channel range optimized via figure of merit (FOM) analysis, a 20-250 channel range covering tritium’s full beta spectrum, and a broad 1-1024 channel range. Quench curves were obtained by fitting the counting efficiency of each ROI to the quench standards. Tritium samples with six different activity levels were prepared, and their radioactivity was calculated using the quench curves. Selecting appropriate ROIs for quench curve determination is critical for measuring low-concentration tritium accurately. This approach reduces uncertainty and emphasizes reliable methods to improve the precision and consistency of tritium measurements.
Industries that use or produce radionuclides have unintentionally released these substances into surrounding soils and sediments. To address this problem, Beautiful Environmental Construction (BEC) Co. developed the BEC’s Radioactive Soil Decontamination (BERAD) system to remove contaminants and reduce the volume of radionuclide-contaminated soils. Owing to the limited availability of radioactive isotopes such as 60Co, 90Sr, 137Cs, and uranium-contaminated soil, naturally occurring elements in soil were used in this demonstration. The soil was divided into six size fractions via manual wet sieving and the BERAD system. Then, the concentrations of uranium, cobalt, strontium, cesium, and iron in each fraction were measured. The results of both separations showed that a considerable amount of each element is retained in the finer size fractions (<0.2 mm). After BERAD separation, the corresponding values yielded 53% uranium, 45% strontium, 66% cobalt, and 53% cesium in the fine size (<0.2 mm) fractions of 35% by weight. The study found that the concentrations of these elements increased as the particle sizes decreased. Iron and micaceous minerals played a significant role in retaining the elements. The pilot scale BERAD system yielded results that were similar to those obtained via laboratory wet-sieving and was successfully demonstrated as a soil washing technology.
This study investigated the seasonal variations and environmental factors influencing soil respiration in Quercus mongolica forests at three distinct sites in South Korea: Mt. Jeombongsan, Mt. Namsan, and Mt. Jirisan. Monthly soil respiration rates were measured from 2009 to 2010 using a closed chamber method, alongside assessments of soil temperature, moisture, and organic matter. Results revealed significant seasonal and spatial variability, with the highest respiration rates recorded during summer months. Soil temperature was identified as the primary driver of respiration, showing strong positive correlations across all sites (R2=0.64 - 0.88). The temperature sensitivity (Q10) values ranged from 2.7 at Mt. Namsan to 5.7 at Mt. Jeombongsan, underscoring the heightened vulnerability of cooler, high-altitude forests to warming. Soil moisture had a dual role, promoting respiration at moderate levels but inhibiting it under saturated conditions, particularly at Mt. Jirisan. Soil organic matter content exhibited an inverse relationship with respiration rates, indicating that substrate quality, rather than quantity, predominantly governs microbial activity. Plant-soil interactions, including root respiration and litterfall decomposition, further modulated respiration patterns, with site-specific differences reflecting variations in vegetation density and ecosystem structure. These findings highlight the complexity of soil carbon dynamics in temperate forests and the critical influence of environmental factors and plant-soil processes. The study provides essential insights for improving carbon cycling models and informs climate-resilient forest management strategies. Future research should prioritize long-term monitoring and experimental manipulations to better predict soil respiration under changing climatic conditions.
In this study, carbon coating was carried out by physical vapor deposition (PVD) on SiOx surfaces to investigate the effect of the deposited carbon layer on the performance of lithium-ion batteries as a function of the asphaltene content of petroleum residues. The petroleum residue was separated into asphaltene-free petroleum residue (ASF) and asphaltene-based petroleum residue (AS) containing 12.54% asphaltene by a solvent extraction method, and the components were analyzed. The deposited carbon coating layer became thinner, with the thickness decreasing from 15.4 to 8.1 nm, as the asphaltene content of the petroleum residue increased, and a highly crystalline layer was obtained. In particular, the SiOx electrode carbon-coated with AS exhibited excellent cycling performance with an initial efficiency of 85.5% and a capacity retention rate of 94.1% after 100 cycles at a current density of 1.0 C. This is because the carbon layer with enhanced crystallinity had sufficient thickness to alleviate the volume expansion of SiOx, resulting in stable SEI layer formation and enhanced structural stability. In addition, the SiOx electrode exhibited the lowest resistance with a low impedance of 23.35 Ω, attributed to the crystalline carbon layer that enhanced electrical conductivity and the mobility of Li ions. This study demonstrated that increasing the asphaltene content of petroleum residues is the simplest strategy for preparing SiOx@C anode materials with thin, crystalline carbon layers and excellent electrochemical performance with high efficiency and high rate performance.