검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

분야

    발행연도

    -

      검색결과 4

      1.
      2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
      The effects of different plasma agent species ( CF4, N2) over the conductivity of CFX cathode material were identified. Both plasma treatments have surface etching effect, while the CF4 plasma treatment has C–F bond modification effect and the N2 plasma treatment has defluorination effect. The changes of surface chemical species and porosity along the plasma agent were elucidated. Moreover, the electrochemical properties of plasma-treated CFX confirmed the effects of plasma treatments. The charge-transfer resistance of plasma-treated CFX was maximum 60.3% reduced than the pristine CFX. The effects of surface chemical modification coupled with etching along the plasma gas agents were compared and identified with their reaction mechanisms.
      4,000원
      3.
      2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
      In this study, we investigate the opportunity of using waste tire char as a cathode material for lithium-ion primary batteries (LPBs). The char obtained by carbonizing waste tires was washed with acid and thermally fluorinated to produce CFX. The structural and chemical properties of the char and CFX were analyzed to evaluate the effect of thermal fluorination. The carbon structure of the char was increasingly converted to CFX structure as the fluorination temperature increased. In addition, the manufactured CFX- based LPBs were evaluated through electrochemical analysis. The discharge capacity of the CFX reached a maximum of 800 mAh/g, which is comparable to that of CFX- based LPBs manufactured from other carbon sources. On the basis of these results, the use of waste tire char-based CFX as a cathode material for LPBs is presented as a new opportunity in the field of waste tire recycling.
      4,000원
      4.
      2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
      Removing CO2 gas to address the global climate crisis is one of the most urgent agendas. To improve the CO2 adsorption ability of activated carbon, nitrogen plasma surface treatment was conducted. The effect of nitrogen plasma treatment on the surface chemistry and pore geometry of activated carbon was extensively analyzed. The porosity and surface groups of the activated carbon varied with the plasma treatment time. By plasma treatment for a few minutes, the microporosity and surface functionality could be simultaneously controlled. The changed microporosity and nitrogen groups affected the CO2 adsorption capacity and CO2 adsorption selectivity over N2. This simultaneous surface etching and functionalization effect could be achieved with a short operating time and low energy consumption.
      4,000원