In the case of nuclear projects, when developing a new reactor type, it is necessary to confirm the reactor type, secure the safety, and especially obtain the construction permit approval of the licensing authority for construction. Schedule management is necessary to carry out nuclear projects, and progress rate management of project progress management is largely composed of three elements: scope management, cost management, and resource management. However, in the case of the small modular reactor (SMR) project currently being carried out, it is difficult to calculate the progress rate including budget and resources due to the nature of the project. Therefore, in the SMR project, it took two years from the beginning to prepare the integrated project master schedule (IPMS) to prepare the draft, and then two revisions were made over a year and a half. In this SMR project, we will consider the entire construction period such as design, purchase and production, construction, commissioning, and operation in terms of scope management. The entire document list was created using the document review and approval sheet created at the beginning of the design. In the PMIS (Project Management Information System), the number of approved documents was calculated by comparing the list of engineering documents. In the purchase production part, the main core equipment such as the primary system nuclear steam supply system (NSSS), the secondary system turbine and condenser, and the man machine interface system (MMIS) are managed. Purchasing and manufacturing management shall be managed so that major equipment can be delivered in a timely manner in accordance with the schedule for delivery of equipment in the IPMS. In order to prevent delays in the start of production, it is necessary to minimize the waiting time for work through advance management tasks such as insurance of drawing, stocking of materials, availability of production facilities, etc. In this way, we decided to carry out the schedule management for the design, purchase and manufacturing part in the SMR project first, and the installation, construction and commissioning part will be prepared for the future schedule management.
Pre-harvest sprouting (PHS) is the precocious germination condition of grains while the spike is still in the mother plant. Because PHS in wheat drastically reduced the quality and economic value of wheat grain, the improving PHS wheat is one of the most important breeding goal in Korean wheat breeding program In this study, we evaluated PHS and germination index (GI) in 33 Korean wheat cultivars, and performed transcriptome analysis between Keumkang (susceptible) and Woori (tolerance). A total of 33 Korean wheat cultivars were used for PHS (28 cultivars) and GI assessment in greenhouse. The DAF (Day After Fertilization) 35 of keumkang and Woori spikes were harvested to perform transcriptome analysis using RNA-sequencing. Each transcriptome was compared with PHS or ABA treated DAF 35 Keumkang and Woori spikes. The PHS in 28 Korean cultivars and GI in 33 cultivars were ranged from 1.33% to 87.44% and from 0.01% to 2.41%, respectively. Woori was demonstrated the second lowest PHS and the lowest GI, however, Keumkang was 23th of 28 cultivars in PHS and 13th of 33 cultivars in GI analysis.
Six cDNA library from the DAF 35 of Keumkang and Woori wheat grain, PHS treated DAF 35 of Keumkang and Woori, and ABA treated DAF 35 of Keumkang and Woori were constructed and sequenced. A total of 53.37 Gb of high-quality reads were obtained using HiSeq 2500. The average mapping rate of assembled transcripts were 88.98%. The differentially expressed genes (DEG) revealed total 332 DEG (105 annotated) were upregulated in DAF 35 Woori library, total 5694 DEG (4623 annotated) were upregulated in PHS treated DAF 35 Keumkang library in comparison with DAF 35 Keumkang library. A total of 86 DEG (51 annotated) were upregulated in PHS treated DAF 35 Woori library in comparison with PHS treated DAF 35 Keumkang library. The Gene ontology and further analysis will be discussed.
Brachypodium distachyon is a temperate annual grass that has a short life cycle, a small genome size, self fertility, and a small physical stature. The relationship with major cereal crop including wheat, Brachypodium is considered as a monocot model plant. Recently, the cell wall composition of Brachypodium is reported closely related with maize and Miscanthus giganteus. Therefore, Brachypodium is emrging as a powerful model plant for bioethanol production. Here, Brachypodium was chronically irradiated with the doses of 50 Gy, 100 Gy, 150 Gy, 200Gy, 250Gy, and 300 Gy. Plant height and fresh weight were observed dosage-dependent negative effect. However, tiller number and internode diameter were found to be increased their value as compared to control. The cell wall yield showed a decreased tendency with dosage-dependent negative, but cell wall yield of 50 Gy and 200 Gy were detected higher than control. The lignin content of irradiated Brachypodium stem was reduced with dosage incease The ratios of lignin content to control were 97.6% (50 Gy), 91.9 (100 Gy), 87.3% (150 Gy), 89.4% (200 Gy), 81.6% (250 Gy), 85.2% (300 Gy). SEM image analysis demonstrated that cell size of 300 Gy plant was decreased by 45% of control. RT-PCR was performed to analyze transcript accumulation of lignin pathway related genes with irradiated Brachypodium stem. CCR, PAL, C4H, and 4CL were detected at least 2 times higher expression than control at 150 Gy, 200 Gy, 250 Gy. The preteatment and enzyme hydrolysis will be discussed for bioethanol production.
Over the last decades, increasing natural disasters and climate change are considered as the major environmental problems facing the globe. Numerous studies have been indicated it would cause huge losses on agriculture, especially in the grain productivity. Therefore, several alternatives are suggested for boosting up productivity of wheat as one of the main human food crop. One of important strategy is proper management of inflorescence development and DELLA proteins have been elucidated to play pivotal roles in growth of many plant organs. In this study, putative negative regulator of DELLA protein, GAST (Gibberellic acids stimulated transcript) have been isolated to identify their role in the developing spike of wheat. Four genes were isolated from its gene family and designated as TaGAST1, 2, 3, 4. Genomic structure was analyzed to demonstrate chromosomal localization of TaGAST genes and evolutionary relationships were also verified with GAST genes in other plant species. RT-PCR was conducted to detect transcriptional changes of TaGAST genes on external phytohormone. Each of TaGAST genes showed considerable changes in transcription level after GA, ABA, PAC treatment, respectively. Through Yeast two-hybrid assay, one protein for TaGAST1, and four proteins for TaGAST2 was isolated as putative interactive proteins in wheat spikes just before and after emergence.
Mutant analysis is one of most optimized genome-wide approach towards acquiring utile phenotypes and defining related genes. Gamma-irradiation, an acknowledged way of mutant-generating method, was applied to gain sets of mutant line in Brachypodium distachyon. B. distachyon is a model plant, commonly used in genus of Gramineae for the research of structure genomics and functional genomics. B. distachyon contribute to rapid and easy analysis because of its small size and quick growth. Mutant population was generated by different doses of gamma-irradiation (0, 50, 100, 150, 200, 250 Gy) in the gamma field phytotron. Distance from the source gives same irradiation duration for each plant. Plant growth parameters such as plant height, tiller number, leaf length & width, internode number & diameter, maturity and yield components (ear number biomass) were scored on M0 plants. Plant responses to different doses of radiation are evaluated and the effective radiation dosages to generate mutant using gamma-phytotron are suggested. Chronic irradiation using gamma-phytotron is useful tool to generate mutants for genomic variations such as SNP or INDEL as well as suitable for functional study of genes in Gramineae.
The direct use of mutation is a valuable approach to generate variability in crops. The electron beam, one of the ionizing radiations, has been applied to evaluate its effect on seed germination and early seedling growth of creeping bentgrass (Agrostis palustris Huds., cv Penn-A1). The mature dry seeds were irradiated with various electron beam energies (0.3, 1.0, 1.3, and 2 MeV) and current levels (0.03 and 0.06 mA). Although large variability was existed within each dose, distinct difference of germiability and seedling vigor were not found at 0.3 MeV / 0.03 mA and 0.3 MeV / 0.06 mA beam condition. However, 1.0 MeV / 0.06 mA application most effectively inhibited and retarded seed germination and most severely restricted cotyledon and root growth in early seedling growth. The direct use of electron beam would be a valuable supplementary approach to generate mutants suitable for breeding purposes.