본 연구는 돼지 B-casein 유전자 위치에서 EGFP가 발현될 수 있는 knock-in 벡터를 구축하기 위하여 실시되었다. 돼지의 B-casein 유전자를 이용하여 knock-in 벡터를 구축하기 위해 돼지의 태아 섬유아세포로부터 B-casein 유전자를 동정하였고 EGFP, SV4O polyA signal을 동정하였다. Knock-in 벡터는 5' 상동 영역 약 5 kb와 3' 상동 영역 약 2.7 kb로 구성되어있으며, positive selection marker로 neor 유전자를, negative selection marker로 DT-A 유전자를 사용하였다. 구축된 knock-in 벡터로부터 EGFP의 발현을 확인하기 위하여 생쥐 유선 세포인 HC11 세포에 knock-in 벡터를 도입하였다. 그 결과 EGFP의 발현을 HC11 세포에서 확인하였다. 이와 같은 결과로서 이 block-in 벡터는 knock-in 형질전환 돼지를 생산하는데 사용될 수 있을 것으로 생각된다.
본 연구는 사람 H-transferase가 과발현하는 돼지 체세포주를 개발하는데 있다. 돼지 세포에 사람 H-transferase 유전자를 발현시키는 것은 이종간 장기 이식에 있어서 초급성 거부 반응을 방지하기 위한 한 가지 방법이다. 본 연구에서는 과발현 벡터를 구축하기 위하여 사람 H-transferase을 HepG2 세포로부터 동정하였으며, 이 유전자를 CMV promoter를 이용하여 발현할 수 있도록 포유동물 발현 벡터인 pRc/CMV 벡터에 삽입하였다. 또한, 돼지 산자의 귀 세포를 이용하여 체세포를 수립한 후 jetPEI DNA transfection reagent를 이용하여 벡터를 도입하였고, 300 μg/ml의 G418로 12일간 선별하였다. PCR을 이용하여 선별된 colony들을 분석한 결과, 벡터가 도입되었음을 확인하였고, RT-PCR을 이용하여 사람 H-transferase mRNA가 발현하는 것을 확인하였다. 본 연구에서 확립된 세포주는 사람 H-transferase가 과발현하는 형질 전환 돼지의 생산에 이용될 수 있을 것으로 생각된다.
전기탈이온 장치를 통한 니켈이온의 이동메커니즘이 이온교환섬유의 전기화학적 특성을 이용하여 조사되었다. 포러스 플러그 모델과 확장된 넌스트-플라크 식이 니켈이온의 이동 현상의 해석을 위해서 적용되었다. 적용된 모델을 통해 전기탈이온 시스템의 성능증가는 이온교환섬유를 통해 변화되는 이동도에 기인하는 것이 아니라, 이온교환매개체의 자체 전도도에 의해 일어나는 전류 유발 효과에 의한 것으로 나타났다. 또한, 최적의 전기탈이온 공정운전이 최소화된 전기적 재생영역하에서 일어남을 본 연구를 통해 제시되었다.
전기투석 공정에서 이온교환막 표면에 형성되는 스케일 영향을 조사하기 위해 장기간 동안 운전되었다. 탈염공정 동안, Ca2+과 SO42- 이온의 농도는 농축실에서 연속적으로 증가하였으며 양이온교환막(Neosepta CMX)표면에 침전이 발생하였다. 초기 스케일 형성동안, 공정성능과 막 특성의 변화는 농축실 염농도 증가에 기인하여 일어나는 양이온교환막의 하계전류밀도가 감소하는 것을 제외하곤 미미하였다. 공정운전이 진행됨에 따라 양이온교환막의 한계전류밀도는 물의 해리 현상이 진행되어 300;A/m2까지 감소하였다. 막 오염은 농축실에서 양이온교환막 표면에 형성된 스케일과 물의 해리현상에 의해 유발된다는 결론을 얻었으며, 이러한 스케일 형성은 CaSO4의 용해도에 의해 예측 가능한 것을 알 수 있었다.