Various reactions and the in-situ formation of new phases can occur during the mechanical alloying process. In the present study, Al powders were strengthened by AlN, using the in-situ processing technique during mechanical alloying. Differential thermal analysis and X-ray diffraction studies were carried out in order to examine the formation behavior of AlN. It was found that the precursors of AlN were formed in the Al powders and transformed to AlN at temperatures above . The hot extrusion process was utilized to consolidate the composite powders. The microstructure of the extrusions was examined by SEM and TEM. In order to investigate the mechanical properties of the extrusions, compression tests and hardness measurements were carried out. It was found that the mechanical properties and the thermal stability of the Al/AlN composites were significantly greater than those of conventional Al matrix composites.
To understand the dynamical structures of stellar wind bubble, one and two-dimensional calculations has been performed. Using FCT Code with cooling effects and assuming constant mass loss rate and ambient medium density, we could divide stellar winds into the regime of slow and fast winds. The slow wind driven bubble shows initially radiative and becomes partially radiative bubble in which shocked stellar wind zone is still adiabatic. In contrast., the fast wind driven bubble shows initially fully adiabatic and becomes adiabatic bubbles with radiative outer shell. We also determine analytically the onset of thin-shell formation time in case of fast wind driven bubble with power-law energy injection and ambient density structure. We solve the line transfer problem with numerical results in order to calculate line profile of [OIII] forbidden line.
The reproduction of animals is a way to maintain their species and demands a large amount of energy. The golden hamsters are seasonal breeders whose reproductive activities are regulated by photoperiod (length of day time in a day). The photic information received is transported to the pineal gland via many steps. Melatonin produced by the pineal gland affects the reproductive neuroendocrine system to manage reproductive activities. The major regulator neurons, secreting gonadotropin-releasing hormone, integrate all kinds of information to govern the reproductive frame hypothalamuspituitary-gonad axis. The elements impinging on the neurons are recently outspread. Thus the present review is to briefly survey the elements discovered newly and subjected to the active research realm and their correlations, focusing on the regulation of reproduction in mainly male golden hamsters as a representative animal.
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) is a potent monoaminergic neurotoxin with the potential to cause serotonergic neurotoxicity, but has become a popular recreational drug. Little has been known about the cellular effects induced by MDMA. This report shows that MDMA inhibits neuronal cell growth and differentiation. MDMA suppressed neuronal cell growth. The results of quantitative real-time PCR analysis showed that Egr-1 expression is elevated in mouse embryo and neuroblastoma cells after MDMA treatment. Transiently transfected Egr-1 interfered with the neuronal differentiation of neuroblastoma cells such as SH-SY5Y and PC12 cells. These findings provide evidence that the abuse of MDMA during pregnancy may impair neuronal development via an induction of Egr-1 over-expression.