검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mass production of high-quality carbon nanotubes (CNTs) remains a challenge, requiring the development of new wetimpregnated catalyst suitable for the catalytic chemical vapor deposition (CCVD) of CNTs in a fluidized bed reactor. For the successful development of a new catalyst, a highly robust system to synthesize CNTs must be established. Here, we systematically investigated the robustness of CNT synthesis by CCVD using a wet-impregnated catalyst. We statistically tested four factors that could potentially affect the robustness of CNT synthesis system, focusing on carbon yield and IG/ID. First, we tested the effect of vacuum baking before CNT growth. F test and CV equality test concluded that vacuum baking recipe did not significantly reduce the variability of the CNT synthesis. Second, we tested the batch-to-batch variation of catalysts. The results of t test and one-way analysis of variance indicate that there is significant difference in carbon yield and IG/ID among catalysts from different batches. Third, we confirmed that there is spatial non-uniformity of wet-impregnated catalysts within a batch when they are produced in large scale. Finally, we developed a multi-step heating recipe to mitigate the temperature overshooting during the CNT synthesis. The multi-step recipe increased the mean of carbon yield, but did not influence the variability of CNT synthesis. We believe that our research can contribute to the establishment of a robust CNT synthesis system and development of new wet-impregnated catalysts.
        4,000원
        2.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A simple, but effective means of tailoring the physical and chemical properties of carbon materials should be secured. In this sense, chemical doping by incorporating boron or nitrogen into carbon materials has been examined as a powerful tool which provides distinctive advantages over exohedral doping. In this paper, we review recent results pertaining methods by which to introduce boron atoms into the sp2 carbon lattice by means of high-temperature thermal diffusion, the properties induced by boron doping, and promising applications of this type of doping. We envisage that intrinsic boron doping will accelerate both scientific and industrial developments in the area of carbon science and technology in the future.
        4,200원