This study was performed to investigate how changing the period of light and dark influences the vegetative growth and the photosynthesis of Doritaenopsis Queen Beer ‘Mantefon’. Clones of Dtps. Queen Beer ‘Mantefon’ at 4-month-old stage were grown in a closed-plant factory system with four different light/dark cycles; 06/06 h, 08/08 h, 10/10 h, and 12/12 h. Temperature and relative humidity were set at 28oC and 80%, respectively, with a photosynthetic photon flux density of 160 ± 10 μmol·m-2·s-1. Repetitive measurements showed that the leaf length and the leaf width were the longest under 12/12 h closely followed by 10/10 h. The fresh weight and the dry weight of leaves and roots were the heaviest at 10/10 h treated samples. Different CO2 uptake patterns were observed from different light/dark cycles. Under 10/10 h and 12/12 h treatments, the CO2 uptake started at early dark period. When the light/dark cycles were shortened to 06/06 h and 08/08 h, the CO2 uptake started at the middle of dark period. Total CO2 uptake amounts were the highest under 12/12 h treatment followed by 10/10 h, 06/06 h, and 08/08 h treatments. Quantitative measurements showed that the vegetative growths under 10/10 h treatment were comparable with that of 12/12 h treatment. These studies indicated that manipulating light/dark can modify the photosynthesis patterns and vegetative growth of Dtps. Queen Beer ‘Mantefon’, resulting in the reduction of the production period.
As an attempt to develop a value-added food product, purple sweet potato powder was added in a model system of steamed bread as a healthy food ingredient and physicochemical properties such as moisture content, specific volume, spread ratio, color, texture as well as consumer preferences on the attributes such as uniformity, color, flavor, elasticity, chewiness, taste, and overall preference were evaluated. Moisture content ranged from 44.16 to 44.55% (wet basis) and appeared independent on the level of purple sweet potato (PSP) powder incorporation. As a result of the addition of PSP powder, the specific volume of steamed bread decreased from 3.22 to 2.55 mL/g, and value of 4.5% sample was significantly lower than other samples (p<0.05). On the other hand, spread ratio ranged from 2.01 to 2.53, and appeared to decrease as the PSP powder concentration increased (p<0.05), indicating a significant improvement. Lightness (L*) decreased significantly as the PSP powder content increased (p<0.05) for both dough and skin of the steamed bread. In addition, an increasing trend in redness (a*-value) and a decreasing trend in yellowness (b*-value) were noticed. Firmness increased significantly with the addition of PSP powder regardless of concentration (p <0.05); however, firmness was not significantly different among samples containing 1.5-4.5% PSP powder (p>0.05). Consumer acceptance test indicated that incorporation of 3% PSP powder in the formulation of steamed breads would be recommended.