Royal jelly (RJ) is a gelatinous substance that bees produce to feed bees and queen bees. It’s frequently sold as a dietary supplement to treat a variety of physical ailments and chronic diseases. While it has long been used in traditional medicine, its applications in Western medicine remain controversial. The inhibitory effect of royal jelly on osteoarthritis was investigated in primary cultured rat cartilage cells and monosodium-iodoacetate (MIA)-induced arthritis rat model 10-hydroxy-2-decenoic acid (10-HAD) is the main fatty acid present in RJ. Among the criteria for RJ quality analysis, 10-HAD content has been proposed as a freshness parameter. We investigated the effect of RJ on the improvement of osteoarthritis on SD rats and they were divided into five groups. In this study, we examined the effect of enzymatic royal jelly (ERJ) administration on osteoarthritis. To determine the antiinflammatory effects of RJ, tumor necrosis factor alpha (TNF-α) and Interleukin-6 (IL-6) expression were measured after lipopolysaccharide (LPS) activation in RAW 264.7 cells. In in vivo animal study, osteoarthritis was induced by intra-articular injection of MIA into knee joints of rats. As a results, ERJ showed that TNF-α and IL-6 levels were decreased by ERJ treatment in a dosedependent manner. In conclusion, ERJ extract was able to inhibit articular cartilage degeneration by preventing extracellular matrix degradation and cartilage cell damage. It was considered that ERJ extract may be a potential therapeutic treatment for degenerative osteoarthritis.
1'0 determine Lhe ll1echanism of cell c1eath incluced by iron chelators. we explored the pathways of the three structurally relatecl ll1 itogen-activatecl protein(MAP) kinase subfami li esduring iron cbelator- inclucecl apoptosis ancl differentiation of oral precancerous ancl cancel‘ cells. The iron chelator c1 eferoxamine(DFO) exertecl potent timeancl c1ose-c1epenclent inhi bitory effects on the growth of IHOK and HN4 cells The major mechanism of growth inhibition following DFO treatment was fOllncl to be apoptosis incluction. as assessecl by annexin V-FITC staining. cell cycle analysis‘ DNA lacldering, a ncl Hoechst staining. We report that DF'O s trongly activates the p38 MAP kinase and extracell ular signal- regu lated kinase(ERK). but c10es not activate the c-Jun N-terminal kin ase/ stl않s-activaLecl protein kinase(JNK/8APK) . Of the three MAP kinase blockers usecl‘ the selective p38 MAP kinase inhibitor 8ß203580 ancl ERK inhibitor PD98059 protected oral premaIignant ancl malignant cells againsL iron chelator- nclllced cell death. which incl icates that the p38 MAP kinase serves as a major mecliator 01' apoptos is induced by this iron chelator DFO also evoked the release of cytochrome c from mitochondria, and incluced the activation of caspase-3 ancl caspase-8 in oral cancer cells, which suggests that apoptosis occurs via the mi tochoncl ri on - mecl iaLed pathway. DFO enhanced the expression of Bax in IHOK ancl HN4 cells. consistent witll thei r p53 status Moreover. DFO downregulatecl the expression 01' Bcl-2 in oral cancer cells. which suggests that DFO- incluced apoptos is 01' oraJ cancer and precancerous cells may be mediatecl by an increase in the ratio of pro-apoptotic to anti-apoptotic proteins. ln terestingJy, trcatmcnt 01' IHOK ancl HN4 cel ls with 8B203580 abolishecl cytochrome c release‘ as wel l as the activation of caspase-3 and caspase-8. DFO suppressecl the expression of epithelial di ffe rentiation markers, such as involucrin, t ransglutaminase II. CK6. and CK19. ancl this suppression was blockecl by p38 ancl ERK MAP kinase ll1hlbltors The oral premalignant(IHOK) ancl malignant cell s(I-lN4) showed differential responses to DFO with respect to the expression of cel l cycle regulatory proteins. cell growth. ancl apoptosis. Coll ectively. the current study reveals that p38 MAP kinase plays an ill1 portant role in iron chela tor-mecliatecl cel l cleath and in the suppression of differentiation of oral premalignantandmalignanLcell s.by activating a c10wnstream apoptotic cascade that executes the ceIl c1eath pathway
Mushrooms have been widely cultivated and consumed as foods and herbal medicines owing to their various biological properties. However, few studies have evaluated the anti-inflammatory effects of mushrooms. Here, we investigated the effects of mushroom extracts (MEs) on lipopolysaccharide (LPS)-induced inflammation in macrophages (RAW264.7 cells). First, we extracted MEs with either water or ethanol. Using LPS-treated RAW264.7 cells, we measured cell proliferation and NO production. Gene expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 (IL-6), and IL-1β was assessed by RT-PCR, and protein abundance of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) and phosphorylation of p65 were determined by immunoblotting. MEs prepared using both water and ethanol inhibited LPS-induced inflammation in RAW264.7 cells. Nitric oxide (NO) levels induced by LPS were reduced by treatment with MEs. Isaria japonica Yasuda water extracts and Umbilicaria esculenta (Miyoshi) Minks ethanol extracts significantly decreased the mRNA expression of inflammation-related cytokine genes including TNF-α, IL-6, and IL-1β. Similarly, the protein abundance of iNOS and COX-2 was also decreased. The phosphorylation of p65, a subunit of nuclear factor-κB was at least partly suppressed by MEs. This study suggests that mushrooms could be included in the diet to prevent and treat macrophage-related chronic immune diseases.
Human embryonic stem cells (hESCs) are promising cell source because of their unique self-renewal and pluripotency. Although hESC-derived cardiac cells are currently generated worldwide, cryopreservation of these cells is still limited due to low rate of post-thaw survival. Cryopreservation of hESC-derived cardiac cells is critical in that their long-term storage can accelerate their use in regenerative medicine. However, to date, there are few reports on efficient cryopreservation and post-thaw survival of hESC-derived cardiac cells. In this study, we evaluated the effects of ginsenoside, which is known to improve survival of rat embryonic cardiomyocytes against myocardial ischemia injury in diabetic rats (Wu et al., 2011), on the survival of hESC-derived cardiac cells after thawing. We induced differentiation into cardiac cells using our previously reported method (Kim et al., 2011). Differentiated, pre-beating stage cardiac cells were cryopreserved using either mass cryopreservation or vitrification. To evaluate the effects of ginsenoside (Re, Rb), we compared three sets: pre- and post-thaw treatment, pre- or post-thaw treatment only. The survival of post-thaw cardiac cells were evaluated using Trypan-blue and Annexin V staining. In addition, the three groups were treated with ROCK inhibitor Y-27632, and compared with non-treatment groups. The effect of ginsenoside was significant in post-thaw treatment group, i.e, thawed cells expressed cardiac specific genes and showed specific functionality such as spontaneous beating. Taken together, we demonstrated favorable effects of ginsenoside on the survival of hESC-derived cardiac cells after cryopreservation and thawing. These results suggest a possible application of well-known cardioprotectant ginsenoside in cell-based tissue engineering using hESC-derived cardiac cells.
Human embryonic stem cells (hESCs) have the potential for use in regenerative medicine and in the field of basic research. Therefore, effective cryopreservation and storage of hESCs are important for preservation of newly established cell line for various purposes. Despite poor survival and slow recovery after thawing, the conventional slow freezing method is most commonly used for cryopreservation of hESCs due to its simplicity and ease of use for freezing a large number of hESCs appropriate to clinical applications. Here we controlled the clump size (Group Ⅰ; 400~450 ㎛, Group Ⅱ; 800~900 ㎛, and Group Ⅲ; 1500~1700 ㎛) of hESCs at 5 days after plating using a glass pipette during cryopreservation in order to obtain a larger amount of hESCs after thawing. Attachment rates differed significantly (P<0.05) in each of the three groups and the average of attachment rate of GroupⅡ was highest in SNUhES4 and H1. In particular, the attachment rate of Group Ⅱ in SNUhES3 showed a significant improvement with ROCK inhibitor Y-27632. These results indicate that clump size and cell-cell adhesions of GroupⅡ are appropriate for cryopreservation compared to the Group Ⅰ and Group Ⅲ. This method increased cell viability and reduced the recovery time leading to various experiments, and therefore has an advantage for use with hESCs like newly established in particular. We demonstrated that use of this effective cryopreservation method with control of the clump size of hESCs can effectively improve the attachment rate and survival of post-thaw hESCs with and without Y-27632.