검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2013.10 구독 인증기관·개인회원 무료
        The purpose of this study was performed to determine the whitening effect of organic solvent extracts from the centipede, Scolopendra subspinipes mutilans. We prepared different concentrations (50%, 70% and 100%) of ethanol, methanol, 100% ethyl acetate and water extracts. We tested melanin inhibitory effect and tyrosinase activity using B16/F10 melanoma cell. As a result, treatment of organic solvent extracts is decreased the biosynthesis of melanin and tyrosinase activity to 30~60%. Especially the 70% ethanol extracts was the most effective in B16/F10 melanoma cells. In the study on melanogenic protein expression, 70% ethanol extracts of Scolopendra subspinipes mutilans blocked glycosylation of tyrosinase. Therefore this result suggests that 70% ethanol extracts could be developed as a skin whitening agents.
        2.
        2013.10 구독 인증기관·개인회원 무료
        The centipede Scolopendra subspinipes mutilans has been a medically important arthropod species by using it as a traditional medicine for the treatment of various diseases. In this study, we derived a novel lactoferricin B like peptide (LBLP) from the whole bodies of adult centipedes, S. s. mutilans, and investigated the antifungal effect of LBLP. LBLP exerted an antifungal and fungicidal activity without hemolysis. To investigate the antifungal mechanism of LBLP, a membrane study with propidium iodide was first conducted against Candida albicans. The result showed that LBLP caused fungal membrane permeabilization. The assays of the three dimensional flow cytometric contour plot and membrane potential further showed cell shrinkage and membrane depolarization by the membrane damage. Finally, we confirmed the membrane-active mechanism of LBLP by synthesizing model membranes, calcein and FITC-dextran loaded large unilamellar vesicles. These results showed that the antifungal effect of LBLP on membrane was due to the formation of pores with radii between 0.74 nm and 1.4 nm. In conclusion, this study suggests that LBLP exerts a potent antifungal activity by pore formation in the membrane, eventually leading to fungal cell death.