Laser cutting has been attracting attention as a next-generation tool in application for nuclear decommissioning. It enables high-speed cutting of thick metal objects, and its narrow kerf width greatly reduces the amount of secondary waste compared to other cutting methods. In addition, it only requires the relatively small cutting head without any complicated equipment, and long-distance cutting apart from a laser generator is possible using beam delivery through optical fiber. And there is almost no reaction force because it is non-contact thermal cutting. For these reasons, the laser cutting is very advantageous for remote cutting. In laser cutting, the irradiated laser power is absorbed and consumed to melt the material of the cutting target. When the applied laser power is greater than the power consumed for melting, the residual power is transmitted to the back of the cut object. This residual power may unintentionally cut or damage undesired objects located behind the cutting target. In order to prevent this, it is necessary to adjust the laser power for each thickness of the target object to be cut, or to increase the distance between the cut target and the surrounding structures so that the transmitted power density can be sufficiently lowered. In this work, safety study on residual power that penetrates laser-cut objects was conducted. Experimental studies were performed to find safe conditions for irradiation power density that does not cause surface damage to the stainless steel by adjusting the laser power and stand-off distance from the target.
Enterotoxigenic Escherichia coli는 신생 및 이유기 돼지 설사의 주요 원인체로서 전세계적으로 양돈산업에 큰 경제적 손실을 끼치고 있다. 그러나 현재 국내에는 이러한 E. coli가 보유하는 다양한 병원성유전자의 분포 및 특성에 대한 정보가 부족한 실정이다. 이에 본 연구에서는 2013년부터 2016년까지 국내 163개 양돈농장에서 이유기 설사증 개체로부터 면봉스왑 샘플을 채취하여 동일 농장의 개체일 경우 5개에서 10개 정도를 혼합한 후, MacConkey agar에 배양하여 최종 API 32E system을 통하여 동정하였다. 분리된 모든 균주에 대해서 3가지의 다른 multiplex PCR을 수행하여 총 13종의 병원성유전자의 분포를 확인하였다. 이를 통하여 총 172개의 최소 한가지 이상의 병원성 유전자를 가지는 E. coli 균주를 확인하였고, 그 결과 병원성 유전자의 분포는 (1) fimbrial adhesins (43.0%): F4 (16.9%), F5 (4.1%), F6 (1.7%), F18 (21.5%), and F41 (3.5%); (2) toxins (90.1%): LT (19.2%), STa (20.9%), STb (25.6%), Stx2e (15.1%), EAST1 (48.3%); and (3) nonfimbrial adhesin (19.6%): EAE (14.0%), AIDA-1 (11.6%) and PAA (8.7%)로 나타났다. 결론적으로 본 연구결과는 국내 양돈농장의 이유기 설사증에 관연하는 E. coli는 다양한 종류의 병원성 유전자를 가지고 있으며 그러한 병원성 유전자의 조합도 매우 다양하게 분포하고 있음을 나타낸다.
This study aimed to evaluate the role of D-dimer in terminal cancer patients. Among 343 incurable cancer patients, only 4 patients (2.8%) had normal D-dimer levels, and the majority (n=115, 81.0%) had levels >2.0 μg/mL. The survival time was significantly differed according to D-dimer levels with a median of 48 days when D-dimer levels were <2 μg/mL and 19 days when D-dimer levels were higher. D-dimer levels were negatively correlated with survival according to Spearman’s rank correlation analysis (coefficient -0.335, p<0.001). In terminal cancer patients, D-dimer concentrations did exhibit prog-nostic significance.
Capecitabine is a prodrug of a 5-fluorouracil (5-FU) that is converted to 5-FU inside the tumor cells. Here, we report a case of 5-FU induced encephalopathy which was subsequently treated with capecitabine without any neurologic complication. A 76-year-old man with rectal adenocarcinoma received chemotherapy, which consisted of 5-FU, leucovorin and oxaliplatin after resection of the primary and metastatic masses. Confusion and agitation were observed during the 2nd cycle of chemotherapy and reappeared during 4th cycle. Both events were completely disappeared within a few days. Capecitabine was administered for 4 cycles without any neurologic toxicity. Capecitabine could be an alternative in patients experiencing 5-FU induced encephalopathy.