If asphalt-aggregate mixture is produced at a high temperature, the mixture will suffer a significant higher shortterm aging (STA) due to the elevated temperature. The binder in that mixture will be oxidized (aged) more than expected during STA due to the highly elevated temperature. The STA at the high-temperature level is one of the reasons why the hot-mix asphalt (HMA) mixture shows many distresses in the early stage of service life. In this respect, adopting warm-mix asphalt (WMA) technology is another advantage in the asphalt pavement industry. In this study, various levels of STA were used to evaluate aging levels of the binder in the mixture before and after STA. A gel-permeation chromatography (GPC) test was performed on the mixture particles without binder recovery to estimate the significance of aging for each case of STA. Statistical analyses were carried out to determine the difference in aging levels among STA temperatures. Statistical test results found that the aging level of the binder after STA was significantly higher than that of binders before STA at an α = 0.05 level. It was also found that the aging level of binders in the WMA mixture was significantly lower than that of binders in HMA after STA at an α = 0.05 level. It was observed that if an HMA mixture was produced at high-temperature STA, its aging level was estimated to be approximately four years in service.
There are some places such as bridges in the heavily industrialized area where the pavement should have a strong resistance against heavy axle loading and waterproof function. In those places, many polymer-modified asphalt (PMA) pavements were applied to protect premature cracking, severe rutting and water intrusion without success. Therefore, a much tougher pavement material with waterproofing function was developed for those places. This study evaluated important properties of the special type asphalt mixture which is highly condensed to be almost void-free condition. A high-quality PMA binder with PG82-34 grade was used for preparing the mixture and the optimum binder content was determined to allow near 0% air void in the mix design. The deformation strength(SD) by Kim Test and rut depth by wheel tracking test were measured at 60℃ as high temperature properties. The flexural strength and fracture toughness was measured at -10℃ as low temperature property. The void-free AC showed the higher performance in all four properties than any other asphalt concretes which were prepared for comparison. Therefore, it was shown that the normal concern about limiting air voids within 3-5% was just an apprehension. The void-free AC can be applied for heavy duty pavement on the bridge where the water-proofing function and higher rutting and cracking resistance are required.
It is well known fact that the filed asphalt mixture is aged in the truck while hauling and queuing for one to four hours before dumping to the hopper of the paver. This aging, which is called short-term aging (STA), affect the physical and mechanical properties of asphalt mixture. For example, the maximum theoretical density of mixture is changed before and after STA. Therefore, when the asphalt mixture specimen is prepared for testing various physical and mechanical properties in laboratory, the mixture should be STA conditioned by a most-likely STA condition of the field. This is the reason why the STA should be performed properly. This study initiated to investigate STA conditioning protocols, set forth many agencies in the world, and to suggest a proper STA protocol which simulates field HMA condition as most likely as possible. According to this study, it was suggested that the blended loose mix for one specimen poured in a canister should be kept in a drying oven (no forced draft) without cap at 163±2℃ and for 70±15 min for normal HMA mix. This protocol was suggested based on that the absolute viscosity level of the recovered binder after STA should be a similar level of the same binder after a standard RTFO run.
표층용 아스팔트 혼합물은 공극률 4%로 다져졌을 때 가장 우수한 공용성을 발휘하는 것으로 알려져 있어 밀입도 아스팔트 혼합물은 배합설계시 4%의 공극률이 얻어지는 아스팔트 함량을 최적아스팔트 함량(optimum asphalt content: OAC)으로 결정한다. 그리고 현장에서는 이 밀도의 96% 이상의 다짐도가 얻어지도록 공극률 6∼7%로 다짐한다. 하지만 이 경우 아스팔트 포장으로의 수분 침투방지를 보장할 수 없어 교량포장의 경우 상판에 방수 처리를 하도록 요구하고 있다. 따라서 아스팔트 포장의 공극률을 0%에 가깝도록 다짐하면서도 공용성을 잘 유지할 수 있다면 방수 처리공정을 생략할 수 있고 포장의 수명도 보장 할 수 있어 일거양득일 것이다. 이에 공극률이 0에 가까우면서도 아스팔트 포장으로서의 특성을 유지할 수 있도록 하기 위해서는 바인더특성을 강화하고 그에 맞도록 골재 입도를 조정하는 것이 필요하다. 본 연구에서는 이렇게 공극률이 0에 가깝도록 개발된 무공극 아스팔트 콘크리트의 중요특성 중 하나인 휨 모드에서의 저온특성으로 유사파괴인성(pseudo fracture toughness: PFT)을 구하여 비교평가 하였다. 이를 위해 보 공시체를 제조하고 영하의 저온에서 3점 휨 시험을 통해 얻어진 하중-처짐 곡선에서 PFT를 구하고 이를 일반 13mm 밀입도 아스팔트(dense-graded asphalt: DGA) 혼합물을 비롯한 개질 SMA 혼합물 등과 비교하였다. 그 결과 무공극 아스팔트 혼합물의 유사파괴인성이 DGA의 4배 이상이 되는 등 가장 우수한 것을 확인 하였다. 이는 고성능의 바인더(PG 82-34)와 그에 맞는 입도조정 때문에 저온 하에서 가장 우수한 파괴인성을 보인 것으로 추정된다. 따라서 큰 균열저항성이 요구되며 방수가 필요한 교면포장 등에 사용할 경우 우수한 성능을 발휘 할 수 있을 것으로 판단된다.
CO2 capture technologies have been highlighted over the past decades because of global warming. Among the various technologies for CO2 capture, facilitated CO2 transport membranes show high CO2 selective performance by introducing carrier which interacts with CO2. In this presentation, we prepared and investigated facilitated CO2 transport membrane comprising potassium bis[(trifluoromethyl)sulfonylimide] (TF2N) dissolved in a polymer matrix of Pebax1657. Adding potassium salt to the membrane shows further improvement in gas permeabilities while maintaining or even improving the gas selectivity, compared to the corresponding neat polymer membrane. Therefore, we have demonstrated that KTF2N can act as dual carrier for CO2 and its facilitated transport membrane could be very effective in enhancing the CO2 separation performance.
So many drinking water treatment plants are under various difficulties by new reinforced effluent standards. Since the target turbidity, much higher than annual average, for designing sludge thickener have to be set to confront high turbidity season, the sludge at thickener should be put up for a long time during usual days. So the soluble manganese and chloroform may be formed under the anaerobic environment in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. As a result, the final effluent quality and sludge volume were much improved; 41 % of manganese, 62 % of chloroform and 35 % of sludge volume. Additionally, effluent quality was improved ; 61 % of Manganese on aeration with pH control and we could make sure of stability effluent quality despite a long sludge retention time. We recommended the standard of installation sludge aeration equipment to nationally supply water treatment plant under effluent water quality problem ; Manganese, Chloroform, etc.