Recent industrial developments have increased the use of Volatile Organic Compounds (VOCs). Odors (e.g., are hydrogen sulfide, mercaptan- type, amine- type and other irritating pungent gaseous or volatile substances)., which are disgusting and disgusting to humans. Currently, regenerative thermal oxidation (RTO), regenerative catalytic oxidation (RCO), Carbon Adsorption Tower, etc. are used for their control to remove VOCs. In this experiment, we report the use of silicon carbide (SiC) for the control of four common VOCs called BTEX (i.e., benzene, toluene, ethyl benzene and, xylene (BTEX))., which is a representative material of VOCs, was removed by using silicon carbide (SiC). The heating SiC was heated be tween 400oC and 700oC in a microwave,. As a result, we observed the removal efficiency of BTEX from 10 ppm to 50 ppm was. At 400oC and 500oC, 0.6~60.3% and 11~64.7% the removal efficiency were achieved, with exponential increase at the temperature from 500oC. At 600oC, it showed more than 69.0~100% removal efficiency of most BTEX materials. Finally, At 700oC, it was confirmed that all BTEX materials were completely removed.
This study was carried out to investigate the effect of malodor and VOCs reduction that could be achieved through the installation of a vapor recovery system (VRS) in a gas station. It was revealed that the reduction efficiencies of malodor by running VRS were about 93% around the oil feeder, 32% in the office and 45% in the site boundary. Specifically, it was remarkable that reduction efficiencies of BTEX over 90% were recorded through VRS operation. In addition, the results of continuous monitoring of THC around the oil feeder device provided good evidence of the inhibition of oil mist diffusion after running VRS.
This study provides a comparison and analysis of the predicted damages related to hazardous chemical substances used in “A” solar cell manufacturing process. In order to predict potential damages, different accident scenarios were established using the ALOHA model and the KOSHA guideline. This study evaluates chemical spills and leaks from cylinder and pipeline. Maximum distance of chemical movement, based on an initial concentration of 150 ppm, was estimated as up to 258 m in summer and 251 m in winter. The impacts of the leakage of chemicals such as ammonia, were dependent on the initial concentration of the chemical leaked, the atmospheric stability and temperature, and the wind speed. All of those however, were affected by air humidity.
In this study, the odor causing in the under-fired charbroiling restaurant was reported in literature investigation,pilot test and field experimental verification. The charbroiling restaurant causes odor complaints of Neighbors soefficient reduction method is requested. Acetaldehyde, ammonia, sulfur compound and the oil mist of white smokeare found to cause odor from the charbroiling restaurant. Pilot test results show that in the removal efficiency ofodor, Electrostatic Precipitation was 67.4%, absorption was 81.2%, adsorption was 74.2% and the ElectrostaticPrecipitation & Adsorption the hybrid system with 85.7% respectively. In the same condition of the hybrid system(Electrostatic Precipitation & Adsorption), the odor removal efficiency were higher when the design parameterssuch as the discharge voltage and current were high. The process efficiency were higher when as the implanterpole was cylindrical. However, the process efficiency rapidly reduced due to the contamination of the processcomponent or material, as the operating time of the equipment is increased. Therefore, fixed maintenance and repairof the equipment is found to be are very important, for long term operation. Therefore, as the experimental resultof this study, applying hybrid system removed odors caused in under-fired charbroiling restaurant which areunregulated, is more effective device that settle civil complaints and preserve environment.
In this paper the lifetime risk assessment of exposure to airborne volatile organic compounds (VOCs) in environmental atmosphere was carried out in one of the Korean industrial city, Gumi based on their measurements of VOCs at five representative outdoor monitoring sites. According to this study toluene, trichloroethylene, and dichloromethane are three main VOCs in Gumi. The carcinogenic risks 5the carcinogenic VOC are greater than the benchmark concentration (1.0E-6) in all five designated sites. Particularly, the Lifetime Cancer Risk in industrial complex 1 and 2 reached 9.64E-5 and 1.32E-4, respectively, both of which are far higher than the benchmark risks. The components of predominant risk in industrial areas are found as chloroform, benzene and trichloroethylene, while those of other sites are benzene and chloroform. It was estimated that the contributions of those componentsto cancer risk are not less than 90%. For non carcinogenic VOCs, the total hazard indices in 5 monitored sites are less than 1. The hazard index in industry complex No. 2 recorded the highest among 5 sites up to 0.663 due to the dominant contribution of 1, 2-dichloropropane by up to 50% (0.335). Based on this analysis, effective emission reduction for chloroform, benzene, trichloroethylene, and 1,2-dichloropropane will rapidly I the cancer risks and hazard indices in Gumi.
This study focuses on the measurement of airborne Volatile Organic Compounds (VOCs) in the Kumi electronic industrial complex during the time periods of August and September, 2002 and January and February, 2003. This study was based on the US-EPA method TO-14 while the VOCs were analyzed with GC/MSD. The toluene level revealed high concentration at all measurement sites. The areal rank of average concentrations of VOCs is as follows : industry1>industry2>urban>middle>residential. Concentrations of VOCs in Kumi electronic industrial ones were generally higher than at Yeochon and Ulsan industrial complexes. Dichloromethane and trichloroethylene, which are used as a cleaner in the process of electronic industries, were observed 4 to 8 times higher than those of other areas. Among the aromatic compounds, toluene showed the highest level, while the concentrations of dichloromethane and trichloroethylene were higher than those of other halogen compounds. In Kumi, toluene, trichloroethylene, and dichloromethane were confirmed as the major compounds of VOCs by this research.