검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2020.04 KCI 등재 서비스 종료(열람 제한)
        This paper discusses the hydrodynamic characteristics of a catamaran at low speed. In this study, the Delft 372 catamaran model was selected as the target hull to analyze the hydrodynamic characteristics by using the RANS (Reynold-Averaged Navier-Stokes) numerical method. First, the turbulence study and mesh independent study were conducted to select the appropriate method for numerical calculation. The numerical method for the CFD (Computational Fluid Dynamic) calculation was verified by comparing the hydrodynamic force with that obtained experimentally at high speed condition and it rendered a good agreement. Second, the virtual captive model test for a catamaran at low speed was conducted using the verified method. The drift test with drift angle 0-180 degrees was performed and the resulting hydrodynamic forces were compared with the trends of other ship types. Also, the pure rotating test and yaw rotating test proposed by Takashina, (1986) were conducted. The Fourier coefficients obtained from the measured hydrodynamic force were compared with those of other ship types. Conversely, pure sway test and pure yaw test also were simulated to obtain added mass coefficients. By analyzing these results, the hydrodynamic coefficients of the catamaran at low speed were estimated. Finally, the maneuvering simulation in low speed conditions was performed by using the estimated hydrodynamic coefficients.
        2.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        A marine flapped rudder is designed to improve the effective lift generated by the rudder; this also improves the maneuverability of the ship. The flap is a high lift device installed at the trailing edge of the rudder to augment lift. In this paper, the characteristics of a thick flapped rudder are analyzed at a low Reynolds number with various ratios of flap chord length to total chord length and various aspect ratios, based on the computational fluid dynamics technique. The performance of the rudder with respect to lift, drag, and center of pressure are investigated, and the efficient ratio of flap chord length to total chord length and improved aspect ratio are determined. Ed: highlight – or ‘superior’. As a case study, the flow on the flapped rudder of an NACA0021 section shape in free stream condition is simulated. The standard k-epsilon turbulence model is used to model the flow around the flapped rudder. The results indicate that the efficient ratio of the flap chord length to total chord length and aspect ratio are 0.3 and 1.4, respectively.