This paper discusses the hydrodynamic characteristics of a catamaran at low speed. In this study, the Delft 372 catamaran model was selected as the target hull to analyze the hydrodynamic characteristics by using the RANS (Reynold-Averaged Navier-Stokes) numerical method. First, the turbulence study and mesh independent study were conducted to select the appropriate method for numerical calculation. The numerical method for the CFD (Computational Fluid Dynamic) calculation was verified by comparing the hydrodynamic force with that obtained experimentally at high speed condition and it rendered a good agreement. Second, the virtual captive model test for a catamaran at low speed was conducted using the verified method. The drift test with drift angle 0-180 degrees was performed and the resulting hydrodynamic forces were compared with the trends of other ship types. Also, the pure rotating test and yaw rotating test proposed by Takashina, (1986) were conducted. The Fourier coefficients obtained from the measured hydrodynamic force were compared with those of other ship types. Conversely, pure sway test and pure yaw test also were simulated to obtain added mass coefficients. By analyzing these results, the hydrodynamic coefficients of the catamaran at low speed were estimated. Finally, the maneuvering simulation in low speed conditions was performed by using the estimated hydrodynamic coefficients.
Mankind has been using ships for more than 5,000 years and has developed a range of related technologies. However, despite such a long history, compared to aircraft with a history of approximately one century, the pace of progress has been markedly slow. Even though technological progress of ships or the installation of various navigation equipment have been achieved, seaborne collisions have occurred quite frequently. This study analyzed the TCAS( Traffic Collision Avoidance System) that has contributed to the prevention of collisions with other transport methods including aircraft to suggest a collision avoidance system that can be deployed for ships. To apply the technologies applied to aircraft that move in 3D to ships that move in 2D, the difference in the operational environment between the two modes was analyzed to identify elements that need to be applied to ships. The suggested display of data on the collision prevention system is one that manipulates the augmented reality display device used in automobiles that over the past few years has undergone rapid development. Based on the presentation of technological elements that need to be considered when adopting the SCAS or the Seaborne Collision Avoidance System as suggested in this study, the authors hope to contribute to the prevention of collisions.
The cruise industry in the Mediterranean region increased from 2000-2018, being the second most important region after the Caribbean. The purpose of this study was to analyze the networks and hub ports of the Mediterranean. This paper used the SNA (Social Network Analysis) methodology, which includes Hub and Authority Combined Centrality (HACC) that has been used to analyze cruise port centrality, as well as degree centrality such as In-Degree, Out-Degree, and Betweenness. This empirical study suggests that the top three ports of the Mediterranean ports’ network in terms of hub index are Barcelona, Civitavecchia, and Palma de Mallorca. The academic implications are the suggestion for data integration based on real itineraries and numbers of POC (Port of Calls), as well as the selection of the hubs of the targeted areas. The practical implications are suggested such as a clear requirement for cruise industry, as a way to widen the scope for the Mediterranean region and a valuable reference for cruise ship companies to select the best fit home ports.
In the field of logistics, the maritime shipping industry plays a critical role as the backbone of global trade activities. Nevertheless, previous studies on the commercialization and benefits of blockchain technology are limited in the field of marine logistics. Thus, the purpose of this study was to predict the benefit for each group involved in marine logistics when blockchain technology is applied. As such, 21 factors of benefits were selected for seven major logistics groups (financial institutions, freight forwarders, inland transportation, ocean carriers, port operators, port–related government authorities, and shippers) to study the benefit expected for each through the commercialization of blockchain technology. Based on the results, a different benefit level is expected for each group when blockchain technology is used. In order, ocean carriers (0.155), inland transportation (0.150), financial institutions (0.153), port operators (0.145), freight forwarders (0.142), port-related government authorities (0.129), and shippers (0.126) were found to benefit most from the use of blockchain technology. This study has industrial implications in that it presents the benefits expected when blockchain technology is realized and used in marine logistics by groups involved in logistics transactions.
In the past 20 years, passenger and cargo transportation performance at the international passenger ports in Korea have increased by 8.6% on the compound annual growth rate, respectively. The Korean government had expected to continue expanding the market of car ferries and the government included plans for the development of additional routes and lanes with neighboring countries such as China, Japan, and Russia as a part of the Plan of the Korean Ministry of Oceans and Fisheries in 2019. However, compared to the development of routes, the management and operation of passenger terminals are inefficient. The purpose of this paper was to introduce the overall improvement of the passenger terminal operating system that reflects the recent changes in the supply and demand of international passenger vessels and the needs of the government and private sector passengers. To this end, a basic survey was conducted on the status of operations and facilities at the Busan International Passenger Terminal and a questionnaire survey was administered on the subject of use. The results of the survey were analyzed using the IPA model. As a result of the analysis, three items in the operation sector, three items in the facility sector, and four items in the system sector of the Busan International Passenger Terminal were identified as in need of improvement. Based on the results, the need for investment to improve the international passenger terminal operating system is suggested.
In recent years, there have been concerted efforts toward predicting ship maneuvering in shallow water since the majority of ship’s accidents near harbors commonly occur in shallow and restricted waters. Enhancement of ship maneuverability at the design stage is crucial in ensuring that a ship navigates safely. However, though challenging, establishing the mathematical model of ship maneuvering motion is recognized as crucial toward accurately predicting the assessment of maneuverability. This paper focused on a study on sensitivity analysis of the hydrodynamic coefficients on the maneuverability prediction of KVLCC2 in shallow waters. Hydrodynamic coefficients at different water depths were estimated from the experimental results conducted in the square tank at Changwon National University (CWNU). The simulation of standard maneuvering of KVLLC2 in shallow waters was compared with the results of the Free Running Model Test (FRMT) in shallow waters from other institutes. Additionally the sensitivity analysis of all hydrodynamic coefficients was conducted by deviating each hydrodynamic derivative from the experimental results. The standard maneuvering parameters including turning tests and zig-zag maneuvers were conducted at different water depths and their effects on the standard maneuvering parameters were assessed to understand the importance of different derivatives in ship maneuvering in shallow waters.
With the expansion of the shipping and port logistics industry in the 21st century, the traffic density is continuously increased because of the increase in volumes of world sea freight and fleets, as well as the increase in the causes of potential marine accidents, such as ship collisions and stranding. Accordingly, the International Maritime Organization (IMO) has requested that the installation and operation of VTS should be applied in areas with high risk of marine traffic, and the request should be included as one of the Safety of Life at Sea (SOLAS) regulations. In this paper, the fundamental requirements of the radar system for vessel traffic services were analyzed and the analyzing factors were based on the IALA guideline.s This paper also includes results for the requirement and recommendation analysis on detection distance, target separation, and the target position accuracy of X-band radar. Also, to check if it satisfies the requirement of detection distance, range and azimuth separation of small point targets, and target position accuracy from the IALA guidelines, the test was conducted through the radar image acquired at the VTS center, and hence, the validity of the technical performance requirements was confirmed.
In this study, the current state of management efficiency of ocean carriers in Korea and the factors affecting them were analyzed. The purpose of this research is to enhance global competitiveness of ocean carriers by presenting suggestions that can improve management efficiency based on the analysis results. The measurement of management efficiency was made using the DEA model. The results of testing the adequacy of the input and output variables used are as follows. Appropriate inputs are total assets, cost of goods sold, charter expenses, sales and general management expenses, and interest expenses. Appropriate variables are sales, operating income ,and operating cash flow. According to the analysis results of the DEA model by these variables, inefficient carriers (78%) are nearly four times more than efficient carriers(22%). However, container carriers have the most improved management efficiency compared to 2016 and 2017. According to the panel regression analysis, the charter rate has the greatest negative impact on efficiency (CRS), and the debt rate has a significant negative impact. Thus, it appears that reducing the charter size and the debt-to-sale rate facilitate improvement of the management efficiency of ocean carriers. Additionally, the pre-sales tax return rate, value added rate, total asset turnover rate, and the scale variable and interest coverage rate have a positive (+) effect. Thus ocean carriers should restore their global competitiveness by improving management efficiency by securing stable cargoes increasing sales profitability from the cost management perspective, increasing productivity, and enhancing the efficiency of their total assets through efficient fleet management.
Long-term shipping contracts represent the cooperative and coexisting relationships between the shipping and steel industries. Yet, differences between the contract forms for iron ore and steel products have emerged. Specifically, the large proportion of consecutive voyage charters (CVC) is being applied in the iron ore trade, whereas the contract of affreightment (COA) is proportionally higher for shipping steel products. The literature review and in-depth interviews in this study identified through the research model, the characteristics of the shipping and market structure in both markets have significantly contributed to the preference of different long-term contracts. It has been determined that the mutual oligopoly market structure and the characteristics of shipping such as, the small number of suitable vessels in the market, the single fixed load/discharge ports, the long-distance voyages, and the potential risks for fatal accidents because of cargo liquefaction, for the iron ore trade, provide higher contribution to the preference of CVC contracts. In contrast, the consignor oligopoly market structure and the shipping characteristics, such as the greater number of suitable vessels available in the market, the variation in ports, the cargo quantity per shipment, the various load/discharge ports, and the need for experienced carriers for steel product loading in the steel product trade has shown higher preference on the COA contracts as the consignors with superiority over the shipowners, resulting in favorable contract types and conditions for the consignors.
Maritime autonomous surface ships (MASS) has been developed over the years. But, there are many unresolved problems. To overcome these problems, this study proposes connected ship navigation system. The system comprises a slave ship and a master ship that leads the slave ship. To implement this system, communication network, route planning algorithms, and controllers are designed. The communication network is built using the transmission control protocol/Internet protocol (TCP/ IP) socket communication method to exchange data between ships. The route planning algorithms calculate the course and distance of the slave ship using the middle latitude sailing method. Nomoto model is used as the mathematical model of the slave ship maneuvering motion. Then, the autoregressive with exogenous variables (ARX) model is used to estimate the parameters of Nomoto model. Based on the above model, the automatic steering controller is designed using a proportional-derivative (PD) control. Also, the speed controller is designed for the slave ship to maintain constant distance from the master ship. Sea experiments are conducted to verify the proposed system with two remodeled boats.