This study was conducted at the National Institute of Animal Science (NIAS) from 2010 to 2017 to develop a late-maturing variety with high productivity for cultivation in the southern region of South Korea. The new variety of Italian ryegrass, ‘IR901’, was a late-maturing variety, and its heading date was 22 May, 17 days later than that of the control variety ‘Kowinearly’. ‘IR901’ had a flag leaf width of 11.2 mm, flag leaf length of 31.8 cm, and plant length of 103 cm on its heading date. The combined average dry matter yield of ‘IR901’ in all three adaptability evaluation regions (Cheonan, Pyeongchang and Haenam) was 7,747 kg/ha, which was similar to that of the ‘Kowinearly’ variety (7,734 kg/ ha). However, the average dry matter yield over three years in Cheonan and Pyeongchang was 82% and 96%, respectively, compared to that of the control, which was most likely because of the poor cold tolerance of ‘IR901’. By contrast, in Haenam, in the southern region, the average dry matter yield of ‘IR901’ was 19% higher than that of the ‘Kowinearly’ variety. The proportions of crude protein (CP), total digestible nutrients (TDN), acid detergent fiber (ADF), and neutral detergent fiber (NDF) in ‘IR901’ were 8.6%, 59.7%, 36.9%, and 54.8%, respectively; the proportions were 0.2% lower, the same, the same, and 2.5% lower than those in the ‘Kowinearly’ variety. The determined in vitro dry matter digestibility (IVDMD) of ‘IR901’ was 72.2% higher than that of ‘Kowinearly’ (67.2). In general, of the two varieties, the forage quality of ‘IR901’ was marginally superior to that of ‘Kowinearly’.
This study was conducted at the National Institute of Animal Science from 2010 to 2017. As a variety that is sufficiently productive in the southern regions to replace imported varieties and sufficiently cold-resistant to be cultivated in the central-northern regions, "IR605" was developed and submitted to the Korea Seed & Variety Service in an application for protection. The novel Italian ryegrass variety "IR605" is a diploid with green leaves, a semi-erect growth habit before wintering, and an erect growth habit in the spring. "IR605" was a medium maturing variety with a heading date of around May 15th. "IR605" had a flag leaf width of 9.9 mm, flag leaf length of 26.7 cm, and plant length on the heading date of 100 cm, which was approximately 5 cm longer than "Kowinearly." The stem thickness and ear length of "IR605" are 0.08 mm thicker and 0.5 cm longer than those of "Kowinearly", respectively. The cold-resistance of "IR605" was weaker than that of "Kowinearly", but strong enough to be cultivated in Pyeongchang, Gangwon province. The dry matter yield of "IR605" (9,308 kg/hectare) was 20% higher than that of "Kowinearly", which was further pronounced in the southern region of Haenam, where there was a 52% increased (p < 0.05). The in vitro dry matter digestibility of "IR605" was 68.4% at which was slightly higher than that of "Kowinearly", The total digestible nutrients was 58.5%, which was slightly lower than "Kowinearly". Overall, the feed quality characteristics of "IR605" were similar to those of "Kowinearly".
Copper (Cu) is a necessary microelement for plants. However, high concentrations of Cu are toxic to plants that change the regulation of several stress-induced proteins. In this study, an annealing control primer (ACP) based approach was used to identify differentially expressed Cu-induced genes in alfalfa leaves. Two-week-old alfalfa plants (Medicago sativa L.) were exposed to Cu for 6 h. Total RNAs were isolated from treated and control leaves followed by ACP-based PCR technique. Using GeneFishing ACPs, we obtained several genes those expression levels were induced by Cu. Finally, we identified several genes including UDP-glucuronic acid decarboxylase, transmembrane protein, small heat shock protein, C-type cytochrome biogenesis protein, mitochondrial 2-oxoglutarate, and trans-2,3-enoyl-CoA reductase in alfalfa leaves. These identified genes have putative functions in cellular processes such as cell wall structural rearrangements, transduction, stress tolerance, heme transport, carbon and nitrogen assimilation, and lipid biosynthesis. Response of Cu-induced genes and their identification in alfalfa would be useful for molecular breeding to improve alfalfa with tolerance to heavy metals.
The objective of this study was to determine the effects of E. coli on boar sperm quality and reproductive performance in sows after artificial insemination. Three different levels of E. coli were artificially inoculated to semen with following concentrations; Control, 500, 5,000 and 50,000 colony forming unit (cfu)/ml. Semen samples were preserved at 17℃ for 5 days. Sperm motility was significantly decreased (p<0.05) on day 3 in the group inoculated with 5,000cfu/ml compared to control groups. In all treatment groups, sperm motility was gradually decreased as storage time increased, but the decline pattern was more drastic in the groups inoculated with 5,000 and 50,000 cfu/ml groups from day 3 (p<0.05) compared to control group. After 3 day of storage at 17℃, sperm viability in sample inoculated with the highest concentration (50,000 cfu/ml) of bacteria was less (p<0.05) than that of control group. The pH of semen sample pH was maintained 7.2~7.5 in all groups during the experimental period. No differences (p>0.05) were found for both storage time and bacterial concentration. The pregnancy rate and live born piglets tend to decrease by increasing the concentration of E. coli in semen. In particular, the rate of pregnancy was lower in the group inoculated with 50,000 cfu/ml (58.3%) compare to the other groups (81.8, 75.0, 76.5%). These results suggest that the contamination of E. coli in boar semen negatively affects fertilizing ability of boar sperm and the reproductive performance obtained from sows after artificial insemination.
The purpose of this paper is to examine the effects on reliability of equipment or product which spends a great deal of its time in the non-operating condition.
The paper will look at the effects on the failure modes, the failure rates, the failure distribution and the possible reliability models.
Many military and commercial systems experienced periods of non-operating stage throughout their life cycle, such as periods of operational storage where the system waits, ready for use. The design of such systems must account for how these periods of non-operating effects system performance.
The simulation methodology for reliability analysis was developed to support the evaluation of nonoperating modes of operation of systems and subsystems. For proper handling of the non-operating environment, issues relating to non-operating failures need to be taken into consideration from design stage of the life cycle. Furthermore, the relevant environmental concerns and issues that need to be taken into consideration are discussed.
The purpose of this study was to investigate perceived health status, activities of daily living and depression of the elderly in nursing facil˗ ities and to identify correlations among them. The collected data is to improve healthy life for the aged people in communities. This study was performed by using of questionnaire which was consisted of perceived health status, activity of daily living(ADL) and depression. The survey was conducted by 180 aged people at nursing homes. The results of perceived health status show that 64.9% of elderly feel very bad or bad, 61.6% of elderly have a degree of independent level of activity of daily living(ADL) and 48.6% of elderly have a degree of depression. There were statically revealed meaningful correlation between ability of activity of daily living(ADL) and perceived health status, ability of activity of daily living(ADL) and depression. This study about connection among perceived health status, activity of daily living(ADL) and depression is necessary for number of the affil˗ iation function of elderly at nursing homes and development of inter˗ vention programs concerned about depression are necessary.
To get good productivity and high feed value of forage, we develop to new Italian ryegrass (Lolium multiflorum Lam.) 'Kogreen'.variety. In Suwon, heading date of 'Kogreen' was on May 3 but in Yonchun was on 8 May that was 2 day later than that of 'Florida 80' and dry matter yield is 12.7ton/㏊, and had a good cold tolerance.
In the present study, genotypic variation of Agrobacterium-mediated transformation of Korean Italian ryegrass has been evaluated. Mature seed-derived calli of a total of seven cultivars were infected and co-cultured with Agrobacterium tumefaciens carrying the binary vector pCAMBIA1301, which contains a reporter gene (gus) and a plant selectable marker gene conferring resistance to hygromycin (hpt) in the T-DNA region. The effects of several factors such as callus type and callus age on transformation frequency and the expression of the GUS gene were investigated. The highest transformation frequency (6.7%) was obtained with the Hwasan 101 cultivar when 9-week-old calli (type-I) were inoculated with Agrobacterium. The overall transformation rates of the examined cultivars ranged from 0.4% to 6.7%. GUS histochemical assays, PCR, and southern analysis of transgenic plants demonstrated that transgenes were successfully integrated into the genome of Italian ryegrass. Thus, optimization of transformation frequency and selection of a suitable cultivar of Italian ryegrass may improve molecular breeding of this species.
In the present study, we have used an annealing-control-primer (ACP)-based differentially display RT-PCR method to identify salt-stress-induced differentially expressed genes (DEGs) in barley leaves. Using 120 ACPs, a total of 11 up-regulated genes were identified and sequenced. Temporal expression patterns of some up-regulated DEGs in response to salt stress were further analyzed by Northern blot analysis. The possible roles of these identified genes are discussed within the context of their putative role in response to salt stress. Thus, the identification of some novel genes-such as SnRK1-type protein kinase; 17 kDa, class I, small heat shock protein; and RNase S-like protein precursor genes-may offer a new avenue for better understanding the salt stress response in plants, knowledge which might be helpful for developing future strategies.
In this study, we conducted to select the promising crops for both uses in the bioethanol and forage production in Korea. The result indicated t㏊t Natsukaje (guinea grass), Gwangpyeongok (corn), Jumbo (sorghum×sudangrass hybrid), SS405 (sorghum×sorghum hybrid), Millex32 (pearl millet), Jeju barnyard grass), Alamo (switch grass) and Selection75 (klein grass) showed the production of biomass from the highest to the lowest in order. However, the order of the production of quality forage was, from the highest to the lowest, Natsukaje (guinea grass), Jumbo (sorghum×sudangrass hybrid), SS405 (sorghum×sorghum hybrid), Gwangpyeongok (corn), Millex32 (pearl millet), Selection75 (klein grass), Jeju (barnyard grass), and Alamo (switch grass). We concluded the Natsukaje (guinea grass) was the best bioethanol crop, and also the Natsukaje (guinea grass) was the best for forage production.