The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) will provide all-sky spectral survey data covering optical to mid-infrared wavelengths with a spatial resolution of 6.′′2, which can be widely used to study galaxy formation and evolution. We investigate the galaxy-galaxy blending in SPHEREx datasets using the mock galaxy catalogs generated from cosmological simulations and observational data. Only ∼0.7% of the galaxies will be blended with other galaxies in all-sky survey data with a limiting magnitude of 19 AB mag. However, the fraction of blended galaxies dramatically increases to ∼7–9% in the deep survey area around the ecliptic poles, where the depth reaches ∼22 AB mag. We examine the impact of the blending in the number count and luminosity function analyses using the SPHEREx data. We find that the number count can be overestimated by up to 10–20% in the deep regions due to the flux boosting, suggesting that the impact of galaxy-galaxy blending on the number count is moderate. However, galaxy-galaxy blending can marginally change the luminosity function by up to 50% over a wide range of redshifts. As we only employ the magnitude limit at Ks-band for the source detection, the blending fractions determined in this study should be regarded as lower limits.
Reverberation mapping (RM) is an ecient method to investigate the physical sizes of the broad line region (BLR) and dusty torus in an active galactic nucleus (AGN). The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission will provide multi-epoch spectroscopic data at optical and near-infrared wavelengths. These data can be used for RM experiments with bright AGNs. We present results of a feasibility test using SPHEREx data in the SPHEREx deep regions for torus RM measurements. We investigate the physical properties of bright AGNs in the SPHEREx deep eld. Based on this information, we compute the eciency of detecting torus time lags in simulated light curves. We demonstrate that, in combination with complementary optical data with a depth of 20 mag in Bband, lags of 750 days for tori can be measured for more than 200 bright AGNs. If high signal-to-noise ratio photometric data with a depth of 21{22 mag are available, RM measurements are possible for up to 900 objects. When complemented by well-designed early optical observations, SPHEREx can provide a unique dataset for studies of the physical properties of dusty tori in bright AGNs.