Aurantii Fructus Immature (AFI) and Aurantii Fructus (AF) are two important traditional Chinese herbs. As the harvesting time varies, the medicinal value of the plants is not uniform. Consequently, it has been difficult to quickly recognize them within the realm of traditional Chinese medicine. Separation and detection technologies are employed in combination to create fingerprints for identification. We proposed the utilization of graphene-assisted electrochemical fingerprint technology to acquire fingerprints of two varieties of medicinal materials. Simultaneously, we also obtained their fingerprints through HPLC. Two fingerprint recognition technologies were compared for their effectiveness. The findings demonstrate that the signals obtained through electrochemical fingerprinting have a higher recognition rate.
The phase Ti-Nb-Sn-HA bio materials were successfully fabricated by high energy mechanical milling and pulse current activated sintering (PCAS). Ti-6Al-4V ELI alloy has been widely used as biomaterial. But the Al has been inducing Alzheimer disease and V is classified as toxic element. In this study, ultra fine sized Ti-Nb-Sn-HA powder was produced by high energy mechanical milling machine. The phase Ti-Nb-Sn-HA powders were obtained after 12hr milling from phase. And ultra fine grain sized Ti-Nb-Sn-HA composites could be fabricated using PCAS without grain growth. After sintering, the microstructures and phase-transformation of Ti-Nb-Sn-HA biomaterials were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The relative density was obtained by Archimedes principle and the hardness was measured by Vickers hardness tester. The -Ti phase was obtained after 12h milling. As result of hardness and relative density, 12h milled Ti-Nb-Sn-HA composite has the highest values.