검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        2.
        2017.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate two abnormal CME-Storm pairs that occurred on 2014 September 10 - 12 and 2015 March 15 - 17, respectively. The first one was a moderate geomagnetic storm (Dstmin  -75 nT) driven by the X1.6 high speed flare-associated CME (1267 km s−1) in AR 12158 (N14E02) near solar disk center. The other was a very intense geomagnetic storm (Dstmin  -223 nT) caused by a CME with moderate speed (719 km s−1) and associated with a filament eruption accompanied by a weak flare (C9.1) in AR 12297 (S17W38). Both CMEs have large direction parameters facing the Earth and southward magnetic field orientation in their solar source region. In this study, we inspect the structure of Interplanetary Flux Ropes (IFRs) at the Earth estimated by using the torus fitting technique assuming self-similar expansion. As results, we find that the moderate storm on 2014 September 12 was caused by small-scale southward magnetic fields in the sheath region ahead of the IFR. The Earth traversed the portion of the IFR where only the northward fields are observed. Meanwhile, in case of the 2015 March 17 storm, our IFR analysis revealed that the Earth passed the very portion where only the southward magnetic fields are observed throughout the passage. The resultant southward magnetic field with long- duration is the main cause of the intense storm. We suggest that 3D magnetic field geometry of an IFR at the IFR-Earth encounter is important and the strength of a geomagnetic storm is strongly affected by the relative location of the Earth with respect to the IFR structure.
        4,200원
        9.
        2000.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Raman spectroscopy has been used to investigate the structure of coal tar pitch heat-treated up to 3000℃ by using 514.5 run Ar ion laser line. Four critical temperature ranges were found on pyrolyzing coal tar pitch, which correspond to four distinct processes from disordered carbons to the well-ordered graphite structure. The range of heat treat temperature (HTT) below 1000℃ corresponds to gas evolution during the pyrolysis of coal tar pitch. Above the HTT are correlated to rearrangements of enlarged molecules, growth of the molecules along the direction of plane, finally stacking in the normal direction of the plane, in the respective HTT ranges of 1000-2000, above 2000 and 2500-3000℃.
        4,000원
        10.
        2018.05 서비스 종료(열람 제한)
        The Stockholm Convention was adopted in Sweden in 2001 to protect human health and the environment, including Persistent Organic Pollutants Rotors, such as toxic and bioaccumulative. Currently, there are 28 kinds of materials. This prohibits and limits the production, use, and manufacture of the product. Korea is a party to the Convention and it is necessary to prepare management and treatment plan to cope with POPs trends. In the text, we have discussed HCBD materials. HCBD belongs to halogenated aliphatic unsaturated hydrocarbons. It is a toxic, organic mixture of bioaccumulation. A study on the treatment of waste containing HCBD substance, We decided to treat the waste containing HCBD thermally. So six samples were selected. Waste water treatment sludge, rubber plate, insecticide, tarpaulin, tire rubber, mixed sample. The tire rubber injected HCBD as a technical sample. HCBD analysis showed that 59.345 ~ 18,238.355 ug/kg was detected. For the thermal treatment, we analyzed element. As a result of thermogravimetric analysis, the weight change due to the decomposition of the material started at 200℃. The material decomposition was completed within 800℃. The thermal treatment was performed on a Lab-scale (1kg/hr). After exhaust gas analysis result, HCBD was detected at 0.01 to 0.09 ug/kg. The decomposition rate is estimated to be 99.848 ~ 99.999%. As a result of dioxin analysis in the exhaust gas, the highest concentration was found in the tarpaulins and the emission limit was exceeded. The concentrations of Cd, Pb, Cr, Cu, Ni and Zn in the residues were very low. Considering the decomposition rate of HCBD containing wastes, incineration treatment at 2 ton/hr or more is considered to be possible. And unintentional persistent organic pollutants such as dioxins in the exhaust gas. Therefore, it is considered safe to operate the incineration temperature at more than 1100℃.
        11.
        2018.05 서비스 종료(열람 제한)
        To achieve energy efficiency improvement is used to lower temperature for emission gas at catalyst inlet, or to reduce/stop using steam to reheat emission gas. Saved energy from this process can be used as power source in order to increase generation efficiency. Dry emission gas treatment, on the other hand, is the technology to increase generation efficiency by using highly efficient desalination materials including highly-responsive slaked lime and sodium type chemicals in order to comply with air pollution standards and reduce used steam volume for reheating emission gas. If dry emission gas is available, reheating is possible only with the temperature of 45℃ in order to expect generation efficiency by reducing steam volume for reheating. Retention energy of emission gas from combustion is calculated by emission gas multiplied by specific heat and temperature. In order to obtain more heat recovery from combustion emission gas, it is necessary to reduce not only exothermic loss from boiler facilities but emission calorie of emission gas coming out of boiler facilities. In order to reduce emission calorie of emission gas, it is efficient to realize temperature lowering for the emission gas temperature from the exit of heat recovery facility and reduce emission gas volume. When applying low temperature catalysts, the energy saving features from 0.03% to 2.52% (average 1.28%). When increasing the excess air ratio to 2.0, generation efficiency decreases by 0.41%. When the inlet temperature of the catalyst bed was changed from 210℃ to 180℃, greenhouse gas reduction results were 47.4, 94.8, 118.5, 142.2 thousand tons-CO2/y, CH4 was calculated to be 550.0, 1100.1, 1375.1, 1650.1 kg-CH4/y, and N2O was 275.0, 550.0, 687.6, 825.1 kg-N2O/y. In the case of high efficiency dry flue gas treatment, reduction of greenhouse gases by the change of temperature 120~160℃ and exhaust gas 5,000 ~ 6,500 ㎥/ton is possible with a minimum of 355,461 ton/y of CO2 and minimum 4,125 tons of CH4/y to a maximum of 6,325 ton/y and N2O to a minimum of 2,045 kg/y to a maximum of 3,135 kg/y.
        13.
        2002.11 KCI 등재 서비스 종료(열람 제한)
        It was found that the purified extract from A. gigas Nakai (polysaccharide, M.W., 25 kD) controled differentiating human ES cells. Its optimal supplementation concentration was decided as 0.8 (μg/ml) to efficiently control the differentiation. It also enhanced the cell growth, compared to the control. However, most widely used and commercially available differentiating agent, Leukemia Inhibitory Factor (LIF) negatively affected on the cell growth even though it controls the differentiation of ES cells, down to 40-50 % based on morphological observation and telomerase activity. It was presumed that the extract first affected on cell membrane and resulted in controlling signal system, then amplify gene expression of telomere, which enhanced the telomerase activity up to three times compared to the control. LIF only increased the enzyme activity up to two times. It was confirmed that the extract from A. gigas Nakai could be used for substituting currently used differentiation controlling agent, LIF from animal resources as a cheap plant resource and not affecting the cell growth. It can broaden the application of the plants not only to functional foods and their substitutes but also to fine chemicals and most cutting-edge biopharmaceutical medicine.
        15.
        1999.03 KCI 등재 서비스 종료(열람 제한)
        The object of this study is to determine the effect of priming on the germination ability and seedling emergence of aged soybean seeds in lab and field conditions. Artificial or natural procedure for seed aging was applied in this study. One seed lot was artificially aged for 3 to 5 days at 42~circC with high relative humidity (nearly RH 100%), and the other one was stored at room temperature for 17 months. Aged seeds were osmoconditioned in -1.1 MPa polyethylene glycol 8000 (PEG) solution for 3 days at 25~circC and air-dried. When Danyeobkong was aged for 4 days average germination was 61.5%, however, this improved to 98.5% after the priming treatment. Improvement of seed germination by priming the aged seed was consistent with large seed sized Jangyeobkong cultivar, indicating that the priming was effective in enhancing seed germinability regardless of seed size. Priming aged seeds also resulted in good stand establishment in the field trials. Germination of aged seeds of Danyeobkong without priming was 17.0%, whereas that of primed ones was 66.4%