Because most spent nuclear fuel storage casks have been designed for low burnup fuel, a safety-significant high burnup dry storage cask must be developed for nuclear facilities in Korea to store the increasing high burnup and damaged fuels. More than 20% of fuels generated by PWRs comprise high burnup fuels. This study conducted a structural safety evaluation of the preliminary designs for a high burnup storage cask with 21 spent nuclear fuels and evaluated feasible loading conditions under normal, off-normal, and accident conditions. Two types of metal and concrete storage casks were used in the evaluation. Structural integrity was assessed by comparing load combinations and stress intensity limits under each condition. Evaluation results showed that the storage cask had secured structural integrity as it satisfied the stress intensity limit under normal, off-normal, and accident conditions. These results can be used as baseline data for the detailed design of high burnup storage casks.
The 300 concrete silo systems installed and operated at the site of Wolsong nuclear power plant (NPP) have been storing CANDU spent nuclear fuel (SNF) under dry conditions since 1992. The dry storage system must be operated safely until SNF is delivered to an interim storage facility or final repository located outside the NPP in accordance with the SNF management policy of the country. The silo dry storage system consists of a concrete structure, liner steel plate in the inner cavity, and fuel basket. Because the components of the silo system are exposed to high energy radiation owing to the high radioactivity of SNF inside, the effects of irradiation during long-term storage must be analyzed. To this end, material specimens of each component were manufactured and subjected to irradiation and strength tests, and mechanical characteristics before and after irradiation were examined. Notably, the mechanical characteristics of the main components of the silo system were affected by irradiation during the storage of spent fuel. The test results will be used to evaluate the long-term behavior of silo systems in the future.
This study explores modern portfolio theory by integrating the Black-Litterman portfolio with time-series clustering, specificially emphasizing K-shape clustering methodology. K-shape clustering enables grouping time-series data effectively, enhancing the ability to plan and manage investments in stock markets when combined with the Black-Litterman portfolio. Based on the patterns of stock markets, the objective is to understand the relationship between past market data and planning future investment strategies through backtesting. Additionally, by examining diverse learning and investment periods, it is identified optimal strategies to boost portfolio returns while efficiently managing associated risks. For comparative analysis, traditional Markowitz portfolio is also assessed in conjunction with clustering techniques utilizing K-Means and K-Means with Dynamic Time Warping. It is suggested that the combination of K-shape and the Black-Litterman model significantly enhances portfolio optimization in the stock market, providing valuable insights for making stable portfolio investment decisions. The achieved sharpe ratio of 0.722 indicates a significantly higher performance when compared to other benchmarks, underlining the effectiveness of the K-shape and Black-Litterman integration in portfolio optimization.
본 연구에서는 해수를 유도용액으로 사용하고 하수처리수를 공급수로 사용하는 정삼투막 공정의 유기/바이오 오염물에 의한 막오염을 저감하기 위해 폴리도파민/탄소 나노 튜브 복합 분리막을 제작하였다. 분리막은 기존 계면중합반응에 탄소 나노 튜브를 첨가하여 초박형 복합 분리막을 제조한 후, 폴리도파민으로 코팅시켜 제조하였다. 제작 된 분리막은 알긴산나트륨(Sodium alginate)용액과 미생물(Pseudomonas aeruginosa PA01) 부착 실험을 통하여 수투과도와 막오염도를 평가하였다. 그 결과, 폴리도파민/탄소 나노 튜브 복합 분리막은 복합되지 않은 분리막에 비하여 높은 수투과도와 낮은 막오염 성능을 보였다.