검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate the diffusion process of Thomson-scattered line photons in both real space and frequency space through a Monte Carlo approach. The emission source is assumed to be monochromatic and point-like embedded at the center of a free electron region in the form of a sphere and a slab. In the case of a spherical region, the line profiles emergent at a location of Thomson optical depth τTh from the source exhibit the full width of the half maximum σλ ≃ τ 1.5 Th . In the slab case, we focus on the polarization behavior where the polarization direction flips from the normal direction of the slab to the parallel as the slab optical depth τTh increases from τTh ≪ 1 to τTh ≫ 1. We propose that the polarization flip to the parallel direction to the slab surface in optically thick slabs is attributed to the robustness of the Stokes parameter Q along the vertical axis with respect to the observer’s line of sight whereas randomization dominates the remaining region as τTh increases. A brief discussion on the importance of our study is presented.
        4,200원
        3.
        2018.05 구독 인증기관·개인회원 무료
        To be better fit for highways, pavement systems are required to provide comfortable and safe driving and be structurally durable. Composite pavements can be an effective option as they are more durable by placing a high functional asphalt overlay on a rigid concrete base layer. In order to apply a composite pavement system to the field, it is necessary not only to develop technologies that prevent reflecting crack and deterioration of the base layer, but also to improve bonding performance of materials and ensure structural performance as a pavement system against traffic loading. In advanced countries like Japan, USA and Europe, high-functional composite pavement systems are being put into practice across new highway networks. In this study, we evaluated structural performance (rutting, reflecting crack, and deflection) by applying traffic loads of actual highways through an accelerated pavement tester (APT) of a composite pavement section made up of a quiet porous surface laid over a water-proofing layer, a continuously reinforced concrete base, and a lean concrete sub-base layer, which was developed with new pavement methods used for each layer prior to field application. The APT specimen was constructed with paving materials and equipment actually used on site in the same dimensions (W3.5m*L14m*H2m) as actual highway sections in Korea, and 3-axle double-wheel heavy load (45ton) cart type KALES(Korean Accelerated Loading and Environmental Simulator) traveling on the specimen in both directions was used to simulate traffic loading. After applying around 8,574,000 ESALs of traffic loads, no reflecting crack occurred on the asphalt surface of the composite pavement, without surface distress except for rutting. In order to examine what causes rutting of pavements, we surveyed thickness of pavements by layer and measured asphalt density.
        4.
        2018.05 구독 인증기관·개인회원 무료
        Asphalt pavement overlay method is one of widely chosen construction methods for remodelling existing aged concrete pavement layer. However, in this case reflective cracking is a challenging issue due to movement of transverse joints: built in existing concrete pavement layer with constant interval length. In this paper, collecting field data: collection of displacement and temperature data on existing concrete pavement layer for further complicated pavement performance analysis, was performed. To fulfil this objective, various types of thermometer were embedded into concrete layer with different depth level. Then, movement of existing concrete layer was measured numerically. Each Displacement Measuring Gauge (DMG) along with thermometer was embedded with depth of 3cm and 15cm, respectively. Additional thermometers were embedded at the middle depth of overlaid asphalt pavement layer for further extensive analysis and data collection. Total four testing sites were considered based on different asphalt mixture type and construction method. The 1st site was constructed with conventional construction approach, the 2nd site was constructed with a new pavement equipment contains simultaneous tack-coating function, the 3rd site was similar to 1st site but Guss-asphalt was constructed as a binder course, and in 4th site Noise-Reduction Porous Asphalt (NRPA) was constructed as a surface course and regular Dense Grade Asphalt (DGA) was constructed as a binder course. A field asphalt pavement layer sample coring works: along with basic material property tests, were also performed to acquire not only overlaid asphalt but also existing concrete pavement materials. This gauge measuring work in this study is an initial step therefore, long-term movement data of each pavement layer was not able to be collected, unfortunately. However through collecting and analysing initial data on each test site, two crucial findings were acquired. First, in all four tested site highest temperature variations were observed at the upper asphalt pavement layer and the variation trends decreased with increase of pavement depth (in case of concrete pavement layer, temperature and movement variations also decreased with increase of pavement depth). Secondly, when Guss-asphalt was applied as a binder course temperature variations of existing concrete pavement layer was crucially smaller than those of other comparison cases. These current findings and collected data set can provide successful input information for further pavement structure analysis such as 2D (and/or 3D) Finite Element Method (FEM) analysis as a future study.