검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2017.10 구독 인증기관·개인회원 무료
        Entomopathogenic fungi have been used to control pest as alternative to chemical pesticide. To kill the pest entomopathogenicfungi penetrate cuticle of pest, reach the hemocoel and utilize nutrient of host pest. Finally fungi kill the host by consumingthe host nutrient and physically damaging the tissues. But these process of fungi to control pest is needed so much timeand this point is a disadvantage for fungi. Therefore we studied other application method of fungi to control pest. Weconducted behavior test of beet armyworm to Isaria fumosoroseus which is high virulent against beet armyworm. Adultof the beet armyworm avoided oviposition at Chinese cabbage treated with I. fumosoroseus compare to control and otherhigh pathogenic isolate, Metarhizium anisopliae and this repellency of I. fumosoroseus lasted for 5days in greenhouse.Behavior of larvae to I. fumosoroseus also investigated with choice and non-choice test. Third to fifth instar larvae detectedand avoided fungi. Repellent behavior of larvae to fungi was more noticeable in younger larvae. This result may be usedto prevent the infestation of moth in crop production.
        2.
        2017.10 구독 인증기관·개인회원 무료
        The diamondback moth, Plutella xylostella is one of the world’s major pests. Economic cost to control this pest wasestimated between US$1.3 billion and US$2.3 billion based on management costs. Conservative estimate included yieldloss caused by 5% diamondback moth was estimated US$4 billion-US$5 billion. P. xylostella was managed by chemicalinsecticide such as organophosphates, carbamates and pyrethroids. But insecticide resistance which is caused by repeatedapplication makes it difficult to control this pest. For environmental friendly control of diamondback moth, entomopathogenicfungi could be used as alternative. We conducted bioassay to select high virulent isolate to larva of diamondback mothwith forty six entomopathogenic fungi which were isolated from soil samples by insect-bait method. As a result of bioassaytwelve isolates was selected as candidate. We investigated control efficacy of these twelve isolates with potted Chinesecabbage at laboratory and greenhouse.
        4.
        2016.04 구독 인증기관·개인회원 무료
        Beet armyworm, Spodoptera exigua, diamondback moth, Plutella xylostella and tobacco cutworm, Spodoptera litura are the three most serious pests of many economically important crops such as cruciferous crops, various vegetables and ornamental plants. Because these pests are known to be resistant to lots of chemical insecticides, integrated control using both or either entomophathogen and/or natural enemy is thought to be an attractive alternative for effective control. One of the obstacles using and expanding mycopesticide is narrow host ranges. At commercial farms, cultivating crops are seriously damaged by various Lepidopteran pests. Farmers want to use a microbial control agent which can control various host insects to reduce cost and labor. In previous study, we selected two entomopathogenic fungi, Metarhizium anisopliae and Paecilomyces fumosoroseus, which shown high virulence against beet armyworm. For wide use of the isolates in farm, we tested its host ranges, especially to diamondback moth and tobacco cutworm, which also are serious pest in Korea. The two isolates were shown a good control effect in leaf disc bioassy.
        5.
        2013.04 구독 인증기관·개인회원 무료
        Sweetpotato whitefly (Bemisia tabaci), especially Q biotype, has been recognized one of the most destructive insect pests worldwide because of increased resistance to some insecticide groups requiring alternative strategies for its control. We studied the conidia production of entomopathogenic fungus Isaria javanica Pf04, which had been reported high virulence isolate against Q biotype of B. tabaci, using grain. Brown rice was most suitable for conidia mass production of the isolate of I. javanica. Conidia was produced high at 25 ~ 27.5℃. The isolate produced more spores when conidia suspension directly inoculated onto media than two-phase fermentation. When concentration of inoculum was high spore production was high, but increasing rate of conidia production was highest at low inoculum concentration (1×105 conidia/ml) as 6,700 times increase compared with 20 times increase at high inoculum concentration (1×108 conidia/ml). These results indicated that the isolate can produce more conidia with cheap agricultural product and can develop as a microbial pesticide to control sweetpotato whitefly.
        10.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,800원