The domestic Pressurized Heavy Water Reactor (PWHR) nuclear power plant, Wolsong Unit 1, was permanently shut down on December 24, 2019. However, research on decommissioning has mainly focused on Pressurized Water Reactors (PWRs), with a notable absence of both domestic and international experience in the decommissioning of PHWRs. If proper business management such as radiation safety and waste is not performed, it can lead to increased business risks and costs in decommissioning. Therefore, the assessment of waste volume and cost, which provide fundamental data for the nuclear decommissioning process, is a crucial technical requirement before initiating the actual decommissioning of Wolsong Unit 1. Decommissioning radiation-contaminated structures and facilities presents significant challenges due to high radiation levels, making it difficult for workers to access these areas. Therefore, technology development should precede decommissioning process assessments and safety evaluations, facilitating the derivation of optimal decommissioning procedures and ensuring worker safety while enhancing the efficiency of decommissioning operations. In this study, we have developed a program to estimate decommissioning waste amounts for PHWRs, building upon prior research on PWR decommissioning projects while accounting for the specific design characteristics of PHWRs. To evaluate the amount of radioactive waste generated during decommissioning, we considered the characteristics of radioactive waste, disposal methods, packaging container specifications, and the criteria for the transfer of radioactive waste to disposal operators. Based on the derived algorithm, we conducted a detailed design and implemented the program. The proposed program is based on 3D modeling of the decommissioning components and the calculation of the Work Difficulty Factor (WDF), which is used to determine the time weighting factors for each task. Program users can select the cutting and packaging conditions for decommissioning components, estimate waste amount based on the chosen decommissioning method, and calculate costs using time weighting factors. It can be applied not only to PHWRs, but also to PWRs and non-nuclear fields, providing a flexible tool for optimizing decommissioning process.
With the aging of nuclear power plants (NPPs) in 37 countries around the world, 207 out of 437 NPPs have been permanently shutdown as of August 2022 according to the IAEA. In Korea, the decommissioning of NPPs is emerging as a challenge due to the permanent shutdown of Kori Unit 1 and Wolsong Unit 1. However, there are no cases of decommissioning activities for Heavy Water Reactor (HWR) such as Wolsong Unit 1 although most of the decommissioning technologies for Light Water Reactor (LWR) such as Kori Unit 1 have been developed and there are cases of overseas decommissioning activities. This study shows the development of a decommissioning waste amount/cost/process linkage program for decommissioning Pressurized Heavy Water Reactor (PHWR), i.e. CANDU NPPs. The proposed program is an integrated management program that can derive optimal processes from an economic and safety perspective when decommissioning PHWR based on 3D modeling of the structures and digital mock-up system that links the characteristic data of PHWR, equipment and construction methods. This program can be used to simulate the nuclear decommissioning activities in a virtual space in three dimensions, and to evaluate the decommissioning operation characteristics, waste amount, cost, and exposure dose to worker. In order to verify the results, our methods for calculating optimal decommissioning quantity, which are closely related to radiological impact on workers and cost reduction during decommissioning, were compared with the methods of the foreign specialized institution (NAGRA). The optimal decommissioning quantity can be calculated by classifying the radioactivity level through MCNP modeling of waste, investigating domestic disposal containers, and selecting cutting sizes, so that costs can be reduced according to the final disposal waste reduction. As the target waste to be decommissioning for comparative study with NAGRA, the calandria in PHWR was modeled using MCNP. For packaging waste container, NAGRA selected three (P2A, P3, MOSAIK), and we selected two (P2A, P3) and compared them. It is intended to develop an integrated management program to derive the optimal process for decommissioning PHWR by linking the optimal decommissioning quantity calculation methodology with the detailed studies on exposure dose to worker, decommissioning order, difficulty of work, and cost evaluation. As a result, it is considered that it can be used not only for PHWR but also for other types of NPPs decommissioning in the future to derive optimal results such as worker safety and cost reduction.
This study deals with replacement analysis of deteriorated equipment for improving productivity of production system. Frequent breakdown of the deteriorated equipment causes a situation that reduces productivity such as low product quality, process delay, and repair cost. However, the replacement of new equipment will be required a high initial investment cost, so it is important to analysis the economic feasibility. Therefore, we analyze the effect of the production system due to the aging effect of the equipment and the feasibility of equipment replacement based on the economic analysis. The process flow, working time, logistics movement, etc. are analyzed in order to build the simulation modeling for a ship and land switchboard production system. Using numerical examples, the economic feasibility analysis of equipment replacement through replacement of existing deteriorated equipment and additional arrangement of new facilities is performed.
부추속 식물은 수선화과의 다년생 초본으로 약 1000여종에 이른다. 한국에서는 24종의 자생종이 분포하며 유전자원으로서 큰 가치를 지닌 분류군이다. 그러나 자생부추속 식물에 대한 연구는 일부 종에 대하여 한정적으로 이루어지고 있으며, 갯부추, 두메부추, 울릉산마늘과 같이 최근 분류되거나 잘 알려지지 않은 종에 대한 연구는 매우 부족하였다. 따라서 본 연구는 자생부추속 4종(강부추, 한라부추, 갯부추, 산부추)에 대한 온도 및 명암처리에 대한 발아특성을 조사하였다. 발아 특성은 발아율, T50, 평균발아일수, 발아균일도, 발아속도로 평 가하였다. 강부추와 갯부추는 5℃에서 50%이상의 발아율을 보였으나 한라부추와 산부추는 전혀 발아하지 않았다. 갯부추 는 남부지방 해변가, 강부추는 강이나 하천주변에 서식하며 한라부추와 산부추는 주로 산지에 서식하는 것으로 알려져있다. 따라서 이러한 차이는 종별 생육지의 환경조건에 따른 차 이로 추정된다. 5℃에서 강부추의 발아율은 명조건(70.0%)보다 암조건(93.3%)에서 향상되었으며, T50과 평균발아일수도 단축되었다. 한라부추는 15℃에서 암조건이 명조건보다 발아율이 증가하고 15℃와 20℃에서는 T50과 평균발아일수가 단축 되었다. 그에 따라 발아속도도 증가하였으며 발아균일도도 상 승하였다. 갯부추는 5℃에서 발아율은 명조건(70.0%)보다 암 조건(83.3%)에서 상승했고, 15℃에서 T50과 평균발아일수가 단축되었으며 발아속도가 증가하였다. 산부추는 15℃와 20℃ 에서 T50과 평균발아일수가 단축되었으며 발아속도가 증가하 였다. 따라서 상대적으로 낮은 온도 처리구에서 명조건보다 암조건이 일부 발아특성을 향상시켰다. 실험에 사용된 4종의 종자는 대부분 15~25℃에서 90%가 넘는 발아율을 보였으나, 다른 발아특성은 온도와 광에 따른 차이를 보였다. 강부추와 산부추의 T50, 평균발아일수, 발아속도는 20℃와 25℃에서 가 장 향상되었고, 한라부추와 갯부추는 25℃에서 T50과 평균발 아일수가 가장 단축되었으며, 발아속도도 가장 빨랐다. 결론적으로 발아특성을 종합적으로 고려했을 때, 강부추는 광과 관계없이 20~25℃, 한라부추는 광과 관계없이 25℃, 갯부추는 암조건 25℃, 산부추는 명조건 25℃와 암조건 20~25℃를 발아 에 적합한 조건으로 제시하였다.
본 연구는 다양한 보존용액이 절화 수명에 미치는 영향과, 절단된 두메부추(Allium dumebuchum H.J.Choi)의 줄기의 수분흡수율 및 상대 생체중을 평가하여 두메부추를 절화로 개발 하기 위해 수행되었다. 두메부추 절화가 수확된 후, gibberellic acid(GA3) 50, 75, 100mg・L-1, 8-hydroxyquinoline sulfate(8-HQS) 25, 50, 100mg・L-1, silver thiosulfate(STS) 0.1, 0.3, 0.5mM, 그리고 Chrysal 8mL・L-1, Floralife 10mL・L-1의 보존용액에 처리되었다. 실험기간 동안 환경조건으로 온도는 24℃로 유지되었으며 상대 습도 43±2.1%, 평균 광도는 22.81±1.2μmol・m- 2・s-1, 일장은 9/15h이었다. 두메부추의 절화수명은 대조구인 절화에서 9.0일로 조사된 것에 비해 GA3 100mg・L-1 보존용액 처리된 절화에서 14.0일로 가장 높게 측정되었다. 수분흡 수율 또한 GA3 100mg・L-1 처리에서 실험이 종료되는 시점에 0.07mL・g-1・d-1로 조사되어 다른 처리보다 높았다. 상대 생체 중은 시판중인 절화수명 연장제 Floralife와 Chrysal 보존용액 처리가 GA3 처리보다 유의하게 높게 조사되었다. GA3를 절화 보존용액으로 사용한 결과, 두메부추는 다른 처리들에 비해 높은 수분흡수율로 절화수명이 대조구보다 평균 5일이상 연장 되었다. 그러나, 8-HQS와 STS 보존용액 처리는 대조구에 비하여 두메부추 절화수명에 큰 차이가 없었다.
Hepatic stellate cells (HSCs) play essential roles in normal and pathophysiological function in liver. In steady state, HSCs contribute to retinoid storage, immune tolerance, and extracellular matrix (ECM) homeostasis. Upon liver injury, they become activated and lead to morphological and functional changes. Studies have demonstrated that activation of HSCs by various stimuli such as toxins, microbial infection, or metabolic overload can promote the fibrotic changes in liver by production of ECM. Herein, we provide current knowledge about the basic characteristics of HSCs and the mechanism by which they are activated.
Fibrous adsorbents, such as activated carbon fibers (ACF) have acknowledged advantages of rapid adsorption rate and ease of modification compared with granular and powdered adsorbents. Based on the surface modification of lyocell-based ACF, we observed different surface characteristics of ACF samples with variation in the mixing ratio and impregnation time of H3PO4, NaCl, and KMnO4 solution. For an engineering application, we also explored the adsorption characteristics of thusproduced ACF samples onto volatile organic compounds (VOCs). Isothermal adsorption experiments were performed using toluene and benzene as adsorbates. Results indicate that both physical and chemical surface properties have an effect on the adsorption of volatile organic compounds (VOCs).
RNA interference (RNAi) has been considered as an alternative strategy to control agricultural pests whereby double-strandedRNA triggers a potent and specific inhibition of its homologous mRNA. Since small double-stranded RNAs are requiredfor various RNAi applications, there is a need for cost-effective methods for producing large quantities of high-qualitydsRNA. Bacillus thuringiensis produces much insecticidal proteins with expression of their encoding genes being drivenby sporulation-dependent promoters. To develop dsRNA mass-production platform utilizing Bt, the pHT1K-EGFP plasmidvector which has cyt1Aa sporulation-dependent promoter was constructed. The transcriptional level of target gene (EGFP)is higher 113 times than Bt reference gene (ssPE). It was applied to protect honeybee from Sacbrood virus, so targetgene was replaced to SBV-vp1. By ingestion of Bt-derived dsRNA to honeybee shows positive effect on SBV suppression.
RNA interference (RNAi) is an universal gene-knockdown mechanism in eukaryotic organisms including insects. RNAi has been considered as an alternative strategy to control agricultural pests whereby double-stranded RNA triggers a potent and specific inhibition of its homologous mRNA. Bacillus thuringiensis (Bt) is a spore-forming bacterium that produces a copious amount of crystal proteins δ-endotoxins under the control of sporulation-dependent promoter. In order to develop dsRNA mass-production platform utilizing recombinant Bt, the pHT1K-EGFP which expresses dsRNA against EGFP under the control of Cyt1-Aa sporulation-dependent promoter was constructed and the expression level of transgene (EGFP) was confirmed by qPCR analysis. These results suggested that Bt’s potential of becoming a new platform in dsRNA production.
Streptomyces is the largest genus of Actinobacteria that forms fungus-like branched networks of hyphae. Streptomyces has been clinically important because they produce various secondary metabolites with antibacterial, antifungal, and nematocidal activities. In order to explore novel insecticidal compounds, extracts from 363 strains of Actinobacteria were screened for their juvenoid and anti-juvenoid activities using yeast-two hybrid system. Among them, extract of Streptomyces spp. showed high anti-juvenoid activity. This extract also showed high level of insecticidal activities against larvae of Aedes albopictus, Laodelphax striatellus, and Ostrinia furnacalis. These results suggested that the secondary metabolites of Streptomyces could be natural sources of novel insecticidal compounds.
Muscle satellite cell (SC) is responsible for postnatal muscle growth, repair, and regeneration. Satellite cell is an im-portant source of multi-potent stem cell process and differentiation into adipogenic, myogenic, and osteoblastogenic. The objective of this study was to identify alter of transcriptome during differentiation in porcine satellite cell and to elevated transcriptome at different stages of postnatal development to gain insight into the differences in differ-entiated PSC. We used RNA-seq technique to investigate the transcriptomes during differentiation in pig muscle. Sequence reads were obtained from Illumina HiSeq2000. Differentially expressed genes (DEG) were detected by EdgeR. Gene ontology (GO) terms are powerful tool for unification among representation genes or products. In study of GO biological terms, functional annotation clustering involved in cell cycle, apoptosis, extracellular matrix, phosphoryla- tion, proteolysis, and cell signaling in differences stage. Taken together, these results would be contributed to a better understanding of muscle biology and processes underlying differentiation. Our results suggest that the source of DEGs could be better understanding of the mechanism of muscle differentiation and transdifferentiation.
Satellite cells were derived from muscular tissue in postnatal pig. Satellite cell is an important to growth and development in animal tissues or organs. However, the progress underlying induced differentiation is not clear. The aim of this study was to evaluate the morphologic and the transcriptome changes in porcine satellite cell (PSC) treated with insulin, rosiglitazone, or dexamethasone respectively. PSC was obtained from postnatal muscle tissue. In study 1, for study the effect of insulin and FBS on the differentiated satellite cells, cells were cultured at absence or presence of insulin treated with FBS. Total RNA was extracted for determining the expression levels of myo-genic PAX3, PAX7, Myf5, MyoD, and myogenin genes by real-time PCR. Myogenic genes decreased expression levels of mRNA in treated with insulin. In study 2, in order to clarify the relationship between rosiglitazone and lipid in differentiated satellite cells, we further examined the effect of FBS on lipid accumulation in the presence or absence of the rosiglitazone and lipid. Significant differences were observed between rosiglitazone and lipid by FBS. The mRNA of FABP4 and PPARγ increased in rosiglitazone treatment. In study 3, we examined the effect of dexame-thasone on osteogenic differentiation in PSC. The mRNA was increased osteoblasotgenic ALP and ON genes treated with dexamethasone in 2% FBS. Dexamethasone induces osteoblastogenesis in differentiated PSC. Taken together, in differentiated PSCs, FABP4 and PPARγ increased to rosiglitazone. Whereas, no differences to FBS and lipid. These results were not comparable with previous reports. Our results suggest that adipogenic, myogenic, and osteoblasto-genic could be isolated from porcine skeletal muscle, and identify culture conditions which optimize proliferation and differentiation formation of PSC.
Muscular satellite cell (SC), which is stem cell of postnatal pig, is an important for study of differentiation into adipogenesis, myogenesis, and osteoblastogenesis. In this study, we isolated and examined from pig muscle tissue to determine capacity in proliferate, differentiate, and expression of various genes. Porcine satellite cells (PSC) were isolated from semimembranosus (SM) muscles of 90∼100 days old pigs according to standard conditions. The cell proliferation increased in multi-potent cell by Masson’s, oil red O, and Alizarin red staining respectively. We per-formed the expression levels of differentiation related genes using real-time PCR. We found that the differentiation into adipocyte increased expression levels of both fatty acid binding protein 4 (FABP4) and peroxisome proliferator- acti-vated receptor gamma (PPARγ) genes (p<0.01). Myocyte increased the expression levels of the myosin heavy chain (MHC), myogenic factor 5 (Myf5), myogenic regulatory factor (MyoD), and Myogenic factor 4 (myogenin) (p<0.01). Osteo-blast increased the expression levels of alkaline phosphatase (ALP) (p<0.01). Finally, porcine satellite cells were indu-ced to differentiate towards adipogenic, myogenic, and osteoblastogenic lineages. Our results suggest that muscle satellite cell in porcine may influence cell fate. Understanding the progression of PSC may lead to improved strat-egies for augmenting meat quality.