Background: Shoulder horizontal adduction (HA) is performed in many activities of daily living. The limited range of motion (LROM) of HA is affected by the tightness of the posterior deltoid, infraspinatus, teres major, and posterior capsule of glenohumeral joint. The LROM of shoulder HA contributes to excessive scapular abduction.
Objects: The aim of this study is to compare the scapular abduction distance and three-dimensional displacement of the scapula during shoulder horizontal adduction between subjects with and without the LROM of shoulder HA.
Methods: 24 subjects (12 people in LROM group and 12 people in normal ROM group) participated. Subjects with less than 115° of HA ROM were included in LROM group. Shoulder HA was performed 3 times for measuring scapular abduction distance and three-dimensional displacement of the scapula. Tape measure was used for measuring scapular abduction distance. Scapular abduction distance was normalized by dividing the scapular size. Polhemus Liberty was used for measuring the three-dimensional displacement of the scapula.
Results: Normalized scapular abduction distance was significantly greater in LROM group than normal ROM group (p<.001). Three-dimensional displacement of the scapula during shoulder HA was greater in LROM group than normal ROM group (p<.05).
Conclusion: LROM group had a greater scapular abduction and three-dimensional displacement of the scapula during shoulder HA compared to normal ROM group.
Two-types of ionically modified multi-walled carbon nanotube (MWNTs) based sensors were developed by radiationinduced graft polymerization using vinyl monomers such as 3-(butyl imidazol)-2-(hydroxyl)propyl methyl methacrylate and 1-[(4-ethenylphenyl)methyl]-3-buthyl-imidazolium chloride with ionic properties, in aqueous solution at room temperature. Subsequently, the tyrosinase-immobilized biosensor was fabricated by a hand-casting of the ionic property-modified MWNTs, tyrosinase, and chitosan solution as a binder onto ITO glass surface. The sensing ranges of the tyrosinase-biosensor for phenol in phosphate buffer solution was in the range of 0.005~0.2 mM. The total phenolic compounds mainly such as caffeine of the tyrosinase-immobilized biosensor for commercial coffee were also determined.
An effective rapid propagation method was established through in vitro cultures of the medicinal plant, Cudrania tricuspidata. In vitro plantlets were obtained from in vitro germinated seeds. The various levels of cytokinins (BAP, Kinetin and TDZ) were tested on multiple shoot formation from plantlets. BAP (1.0 mg/l) treatment induced highest number of multiple shoots. Single shoot cultures gave higher initial shoot numbers than 5 shoots per culture. Among the various culture media, the shoot elongation was optimal on 2 MS basal medium without growth regulators. The IAA (2.0 mg/l) treatment induced highest number of roots. IBA (2.0 mg/l) treatment more promoted in vitro root growth than other concentrations. Rooted shoots were transferred directly to small pots with an artificial soil and successfully acclimatized.
A cytosolic ascorbate peroxidase, hydrogen peroxide-scavenging enzyme, was characterized from Codonopsis lanceolata. The cytosolic ascorbate peroxidase cDNA (CAPX) was 983 nucleotides long and possess an open reading frame of 753 bp with 251 amino acids (MW 27.9 kDa) with pI 5.61. The deduced amino acid sequence of CAPX shows high homology to other known cytosolic APXs (78~83%), but the CAPX was clustered independently from compared ten plant APXs. The CAPX gene was highly expressed in leaf and stem tissues, but not in root. When Codonopsis leaves cut using scalpel were soaked in 1 mM hydorgen peroxide, the expression of CAPX gene was suppressed.
A cinnamoyl CoA reductase (CCR) cDNA (ClCCR) was isolated from tabroot mRNAs of Codonopsis lanceolata by cDNA library construction, and its expression was investigated in relation to abiotic stresses. The ClCCR is 1008 bp in length with an open reading frame (ORF) of 336 amino acids. The deduced amino acid sequence was showed high similarity with cinnamoyl-CoA reductases of P. tremuloides (AAF43141) 87%, F.×aranassa (AAP46143) 83%, L. album (CAD29427) 80%, E. gunnii (CAA66063) 72%, S. tuberosum (AAN71761) 83%. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was revealed that the ClCCR expression was regulated by abiotic stresses.
Scopolamine and hyoscyamine are important anticholinergic compounds obtained from Hyoscyamus niger. Adventitious roots induced from rhizome of H. niger and roots were cultured in SH medium supplemented with 3% (w/v) sucrose and 0.5 mg/L IBA. Roots were grown rapidly after 10 days of cultures. Scopolamine production was increased 7 times and hyoscyamine production was increased 12 times after 10 day of cultures. SH medium was best in root growth. But, highest scopolamine productivity was observed in WPM medium, followed White medium and best hyoscyamine productivity was resulted in MS medium. Sucrose was increased scopolamine and hyoscyamine production were increased the medium supplemented by sucrose comparing to than those by other carbon sources.