검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Coal-based graphite has become the main material of emerging industries. The microstructure of coal-based graphite plays an important role in its applications in many fields. In this paper, the effect of carbon disulfide/N-methyl-2-pyrrolidone solvent mixture extraction on the microstructure of bituminous coal-based graphite was systematically studied through preliminary extraction coupled with high-temperature graphitization. The graphitization degree g (75.65%) of the coal residue-based graphite was significantly higher than that of the raw coal-based graphite. The crystallite size La of the coal residue-based graphite was reduced by 47.06% compared with the raw coal-based graphite. The ID/ IG value of the coal residue-based graphite is smaller than that of the raw coal-based graphite. The specific surface area (16.72 m2/ g) and total pore volume (0.0567 m3/ g) of the coal residue-based graphite are increased in varying degrees compared with the raw coal-based graphite. This study found a carbon source that can be used to prepare coal-based graphite with high graphitization degree. The results are expected to provide a theoretical basis for further clean and efficient utilization of the coal residue resources.
        4,000원
        3.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Energy and environmental are always two major challenges for the sustainable development of the modern human being. For avoiding the serious environmental pollution caused in the fabrication process of porous carbon, a popular energy storage material, we reported a facile, green and activating agent free route hereby directly carbonizing a special biomass, Glebionis coronaria. A nitrogen doped hierarchical porous carbon with a specific surface area of up to 1007 m2 g−1 and a N doping content of up to 2.65 at.% was facilely fabricated by employing the above route. Benefiting from the peculiarly hierarchical porous morphology, enhanced wettability and improved conductivity, the obtained material exhibits superior capacitance performance, which capacitance reaches up to 205 F g−1 under two-electrode configuration, and no capacitance loss is observed after 5000 cycles. Meanwhile, the capacitance retention of the obtained material arrives up to 95.0% even under a high current density of 20 A g−1, illuminating its excellent rate capability. The fabricated nitrogen-doped hierarchical porous carbon with larger capacitance than commercial activated carbon, excellent rate capability and cycle stability is an ideal cost-efficient substitution of commercial activated carbon for supercapacitor application.
        4,000원