The present study aimed to analyze the metaproteome of the microbial community comprising harmful algal bloom (HAB) in the Daechung reservoir, Korea. HAB samples located at GPS coordinates of 36°29’N latitude and 127°28’E longitude were harvested in October 2013. Microscopic observation of the HAB samples revealed red signals that were presumably caused by the autofluorescence of chlorophyll and phycocyanin in viable cyanobacteria. Metaproteomic analysis was performed by a gelbased shotgun proteomic method. Protein identification was conducted through a two-step analysis including a forward search strategy (FSS) (random search with the National Center for Biotechnology Information (NCBI), Cyanobase, and Phytozome), and a subsequent reverse search strategy (RSS) (additional Cyanobase search with a decoy database). The total number of proteins identified by the two-step analysis (FSS and RSS) was 1.8-fold higher than that by one-step analysis (FSS only). A total of 194 proteins were assigned to 12 cyanobacterial species (99 mol%) and one green algae species (1 mol%). Among the species identified, the toxic microcystin-producing Microcystis aeruginosa NIES-843 (62.3%) species was the most dominant. The largest functional category was proteins belonging to the energy category (39%), followed by metabolism (15%), and translation (12%). This study will be a good reference for monitoring ecological variations at the meta-protein level of aquatic microalgae for understanding HAB.
본 연구에서는 바이오매스 폐기물인 Corynebacterium glutamium을 Alg를 이용한 고정화와 PEI 표면개질 과정을 통하여 유해 미세조류인 Microcystis aeruginosa를 제거할 수 있는 흡착소재인 PEI-AlgBF를 개발하였다. 녹조의 발생단계에 상관없이 PEI-AlgBF는 수계로부터 M. aeruginosa를 성공적으로 제거할 수 있었으며 유해조류 제거과정에서 M. aeruginosa 세포의 파괴를 유발하지 않았다. 흡착소재의 표면적은 M. aeruginosa의 제거효율에 매우 큰 영향을 주는 주요인자로 확인할 수 있었다. PEI-AlgBF를 사용한 M. aeruginosa 흡착/제거 방식은 기존 기술에 비하여 환경영 향성이 낮기 때문에 보다 안전하고 안정적인 유해조류의 제어 방식이 될 것이다.
지구온난화의 주요 원인인 CO2로 인한 대기 기온 상승은 세계적으로 큰 화두가 되고 있다. 고분자 분리막을 이용한 이산화탄소 포집용 분리막 제조는 공정의 단순화와 가격적인 측면에서 우수하며 이산화탄소 분리성능이 우수하다는 장점이 있다. 본 연구에서는 Si-PEG를 이용한 이산화탄소 포집용 기체 분리막을 제조하였다. 분리막 제조에 앞서 Si-PEG를 합성한 뒤, 1H-NMR, GPC, FT-IR을 통해 합성의 유무를 판단하였다. 복합막 제조는 지지체위에 Si-PEG를 코팅하여 제조하였다. 코팅제는 Isocyanate, Si-PEG, 촉매를 사용하여 코팅을 실시하였으며 가교를 위하여 고온공정을 진행하였다. 제조한 기체투과 복합막은 50GPU의 이산화탄소 포집값을 보이며 질소에 대한 이산화탄소의 선택도는 15의 결과를 보여 기체분리막으로의 활용 가능성을 확인하였다.
이소프로필알코올/물 혼합물은 가교된 폴리비닐알코올 복합막을 이용하여 투과특성평을 알아보았다. 검화도가 다 른 3종 PVA를 이용하여 고분자의 농도와 GA 농도에 따라서 투과특성을 확인하였다. 복합막은 PVA 용액을 PAN 지지체 위에 캐스팅한 후, 열가교를 통해 제조하였다. PVA 농도가 증가할수록 투과도는 감소하지만 선택도는 증가하는 것을 확인하였다. PVA-3이 7 wt% 농도로 코팅된 복합막에서 209 g/m2h의 투과도를 가지고, 100 이상의 선택도를 가지는 것을 확인하였다. 침지형 분리막을 제조하여 feed tank 온도와 feed 용액의 IPA 농도에 따라서 투과실험을 확인하였다. 또한 IPA 수용액에 농축실험을 지속적으로 한 결과, 60시간 후에 IPA의 농도가 99%까지 증가하는 것을 확인하였다.
기체분리용 기능소재에 대한 세계적인 시장의 요구가 증가함에 따라 광범위한 연구개발이 진행되고 잇다. 본 연구는 둘 이상의 기체혼합물에서 높은 이산화탄소 포집성능을 목적으로 하는 복합막의 제조이다. Isocyanate와 SI-PEG, 소 량의 촉매를 사용하여 코팅액을 제조한 뒤 PAN지지체 위에 코팅하여 복합막을 제조하였다. SEM기기를 활용하여 복합막의 코팅층을 확인하였고 Bubble flowmeter를 사용하여 기체투과특성평가를 실시하였다. 기체복합막의 두께는 3 um 이하로 고른 분포를 보이며, 50 GPU의 이산화탄소 투과값과 질소에 대한 이산화탄소 선택도는 15의 결과를 보였다.
분리막을 이용한 기체 투과 특성은 이산화탄소 분리성능이 탁월하다. 복합막제조에 앞서 Si-PEG를 합성한 뒤, 1H-NMR, GPC, FT-IR등을 이용하여 합성을 확인하고 지지체 위에 실리콘 코팅을 하여 SEM 사진으로 복합막의 코팅층 확인 및 Bubble flowmeter을 이용하여 기체투과 성능을 측정하였다. 코팅제는 Isocyanate와 합성한 Si-PEG, 소량의 촉매를 사용하여 지지체 위에 코팅하였고 고온에서 가교과정을 거친 후 복합막을 제조하였다. 제조한 기체투과 복합막은 3um 이하로 고른 분포를 보이고, 50GPU의 이산화탄소 투과값과 질소에 대한 이산화탄소 선택도는 15의 결과를 보였다. 또한 코팅제의 조성을 다양하게 변화하여 각각의 (N2, O2, CO2) 투과 성능을 확인 하였다.
본 연구에서는 리튬이온전지용 친수화된 세퍼레이터의 전기화학적 성능에 대한 연구를 진행하였다. 리튬이온전지 용 분리막으로 사용되는 폴리올레핀 소재는 소수성이고, 카보네이트 계열의 유기용매를 사용하는 전해액은 친수성을 가진다. 따라서 리튬이온전지는 수계전해액을 사용하기 때문에 폴리올레핀계 분리막에 다양한 친수성 고분자를 도입하여 친수화 처 리하였다. 코팅된 세퍼레이터의 변화를 평가하기 위해, 표면 관찰, 코팅시간에 따른 친수화도, 다공성, 젖음성에 대한 특성평 가를 수행하였다. 최종적으로 리튬이온이 코팅된 세퍼레이터의 저항과., 이온전도도를 측정하여 리튬이온전지 성능평가를 진 행하였다. PMVE로 코팅한 세퍼레이터의 친수화 정도가 우수하며, 세퍼레이터의 기공이 잘 유지되어 우수한 이온전도도를 나타냄으로써 이차전지 배터리에 적용을 위한 잠재성을 가짐을 확인하였다.
최근 전 세계적으로 급속한 도시화, 인구증가 및 기후변화에 따른 물의 수요와 공급의 불균형으로 인해 물 산업 의 경제, 사회, 환경적 중요성은 더욱 증가하고 있다. 이러한 물 산업은 크게 해당 분야에 따라 사용되는 분리막의 종류가 상 이하다. 주로 물리적, 화학적 안정성이 매우 우수한 고분자 소재가 사용되고 있으나, 이들 고분자들의 소수성인 성질 때문에 친수성을 부여하는 다양한 방법들이 소개되고 있다. 본 연구에서는 상용화되어 있는 중공사 지지체에 총 4종류의 친수성 고 분자들을 도입하여 친수성을 부여하였고, 주사전자현미경을 통해 코팅된 중공사 지지체의 모폴로지를 확인하였다. 또한, 각 고분자들로 코팅한 중공사 지지체의 친수화 정도를 알아보기 위해 접촉각을 측정하였고, 마지막으로 코팅 시간에 따른 수투 과도 변화 그리고 친수성 고분자에 따라 수투과도에 미치는 영향을 확인하였다. 그 결과 Pluronic 1 wt%로 코팅하였을 때 친 수화 정도가 우수하며 중공사의 기공을 막지 않고 우수한 수투과도 정도를 나타내 수처리 분리막으로 가장 적절하다는 결론 을 얻을 수 있었다.
연료로부터 벤젠 또는 톨루엔과 같은 유독한 방향족 성분의 제거 및 분리는 최대 허용 농도의 감소로 인해 점점 더 많이 주목 받고 있다. 그 중에서도 가솔 린의 벤젠 함량은 지금 법률상으로 유럽에서 1% 이하로 제한되고 있다. 이러한 분리공정에 있어서 에너지의 소모를 줄이고 분리효율을 높일 수 있는 투과증발 공정이 각광을 받고 있다. 본 연구에서는 벤젠에 대한 고선택성을 나타내는 sulfonated SEBS 공중합체를 합성하였고, 1H-NMR과 FT-IR 분석을 통해 술폰화 가 되었음을 확인하였다. 혼합물 분리를 위한 투과증발 실험 장치를 제작하여 sulfonated SEBS막을 제조하여 벤젠 조성 변화에 따른 투과증발 실험을 실시하 였으며, 그에 따른 투과유량 및 투과도를 계산하여 투과특성을 확인하였다.
본 연구는 둘 이상의 기체혼합물에서 높은 이산화탄소 분리성능을 목적으로 하는 복합막의 제조이며 지지체 위에 실리콘 코팅을 하여 SEM 사진으로 복합 막의 코팅층 확인 및 Bubble flowmeter로 기체투과 성능을 조사하였다. 코팅제 는 Isocyanate와 Si-PEG, 소량의 촉매를 사용하여 지지체 위에 코팅하였고 고온에서 가교과정을 거친 후 복합막을 제조하였다. 코팅층은 3 um 이하로 고른 분포를 보이고, 50 GPU의 이산화탄소 투과값과 질소에 대한 이산화탄소 선택도 는 15의 결과를 보였다. 또한 코팅 방법과 코팅제의 조성을 다양하게 하여 각각의 기체 (N2, O2, CO2) 투과 성능을 확인 하였다.
분리막을 이용한 투과증발법은 에너지 소모가 적고 경제적이며 환경친화적이기 때문에 분자스케일 액체/액체 분리에 있어서 매우 주목 받고 있는 기술이다. 방향족 화합물과 지방족 화합물을 분리하는 공정은 석유정제, 석유화학공정 등 에서 특히 중요한 분리공정 중의 하나이다. 본 연구에서는 벤젠에 대한 고선택 성을 나타내는 PEG가 함유된 폴리이미드 공중합체를 합성하였고, 1H-NMR 스 펙트럼과 FT-IR 스펙트럼에서 PEG 특성 피크의 확인을 통하여 PEG가 도입되었 음을 확인 하였다. 혼합물 분리를 위한 투과증발 실험 장치를 제작하여 PEG 함량이 다른 막을 제조하여 벤젠 조성 변화에 따른 투과증발 실험을 실시하였으며, 그에 따른 투과유량 및 투과도를 계산하여 투과특성을 확인하였다.
Lithium-ion-batteries (LIBs)는 최근 에너지저장 시스템(EESs) 분야에서 새롭게 large-scale battery를 중점으로 관심이 집중되고 있다. 이를 위해서는 battery의 수명, 에너지 밀도, 용량, 안정성, 가격 등 더 높은 기준이 요구되며, polyolefin 계 separators가 우수한 성능을 나타낸다. 본 연구에서는 다공성 분리막을 이용 하여 liquid electrolute batteries에 사용되는 separator 분리막에 친수성 고분자인 PVA, EVOH, Pluronic 등의 코팅 효과를 나타내었다. Separator는 두 종류를 사용하였으며, 각각 높은 porosity를 가진 16 H와 낮은 porosity를 가진 16 L로 구분하여 간단한 집 코팅 방법으로 코팅을 진행하였다. 특성평가로는 SEM을 통하여 물성을 평가하였고, 접촉각 및 이온 전도도를 측정하여 친수성 고분자의 친수화 효과를 알아보았다.
화학산업에 있어서 종래의 분리 기술에 의한 문제점을 해결하기 위해 투과증 발 공정 기술을 촉진시켜 왔다. 요즘 투과증발의 대부분은 bio-butanol, isopropanol 및 다른 유기용제류의 탈수를 위해 사용되고 있으며, 그 중 유기용 제의 탈수공정은 유기물의 분리공정에 비해 상당한 발전을 이루고 있다. 본 연 구에서는 물에 대한 고선택성을 나타내는 분리막 모듈을 이용하여 IPA와 물의 공비혼합물을 대상으로 공급액 온도, 투과액의 응축 온도와 같은 투과증발 공정 변수가 IPA 탈수 성능에 미치는 영향을 알아보았다. 또한 water uptake 및 접촉 각을 측정하여 친수화 정도를 알아보았다.
분리막을 이용한 투과증발법은 에너지 소모가 적고 경제적이며 환경친화적이기 때문에 분자스케일 액체/액체 분리에 있어서 매우 주목 받고 있는 기술이다. 방향족 화합물과 지방족 화합물을 분리하는 공정은 석유정제, 석유화학공정 등 에서 특히 중요한 분리공정 중의 하나이다. 본 연구에서는 벤젠에 대한 고선택 성을 나타내는 PEG가 함유된 폴리이미드 공중합체를 합성하였고, 1H-NMR 스 펙트럼과 FT-IR 스펙트럼에서 PEG 특성 피크의 확인을 통하여 PEG가 도입되었 음을 확인 하였다. 혼합물 분리를 위한 투과증발 실험 장치를 제작하여 PEG 함량이 다른 막을 제조하여 벤젠 조성 변화에 따른 투과증발 실험을 실시하였 으며, 그에 따른 투과유량 및 투과도를 계산하여 투과특성을 확인하였다.
본 연구는 둘 이상의 기체혼합물에서 높은 이산화탄소 분리성능을 목적으로 하는 복합막의 제조이며 지지체 위에 실리콘 코팅을 하여 SEM 사진으로 복합 막의 코팅층 확인 및 Bubble flowmeter로 기체투과 성능을 조사하였다. 코팅제는 Isocyanate와 Si-PEG, 소량의 촉매를 사용하여 지지체 위에 코팅하였고 고온 에서 가교과정을 거친 후 복합막을 제조 하였다. 코팅층은 3 μm 이하로 고른 분포를 보이고, 50 GPU의 이산화탄소 투과값과 질소에 대한 이산화탄소 선택도 는 15의 결과를 보였다. 또한 코팅 방법과 코팅제의 조성을 다양하게 하여 각각 의 기체(N2, O2, CO2) 투과 성능을 확인하였다.
분리막을 이용한 투과증발법은 에너지 소모가 적고 경제적이며 환경친화적이기 때문에 분자스케일 액체/액체 분리에 있어서 매우 주목 받고 있는 기술이다. 방향족 화합물과 지방족 화합물을 분리하는 공정은 석유정제, 석유화학공정 등에서 특히 중요한 분리공정 중의 하나이다. 본 연구에서는 벤젠에 대한 고선택성을 나타내는 PEG가 함유된 폴리이미드 공중합체를 합성하였고, 1H-NMR 스펙트럼과 FT-IR 스펙트럼에서 PEG 특성 피크의 확인을 통하여 PEG가 도입되었음을 확인 하였다. 혼합물 분리를 위한 투과증발 실험 장치를 제작하여 PEG 함량이 다른 막을 제조하여 벤젠 조성 변화에 따른 투과증발 실험을 실시하였으며, 그에 따른 투과유량 및 투과도를 계산하여 투과특성을 확인하였다.
연료로부터 벤젠 또는 톨루엔과 같은 유독한 방향족 성분의 제거 및 분리는 최대 허용 농도의 감소로 인해 점점 더 많이 주목 받고 있다. 그 중에서도 가솔린의 벤젠 함량은 지금 법률상으로 유럽에서 1% 이하로 제한되고 있다. 이러한 분리공정에 있어서 에너지의 소모를 줄이고 분리효율을 높일 수 있는 투과증발 공정이 각광을 받고 있다. 본 연구에서는 벤젠에 대한 고선택성을 나타내는 sulfonated SEBS 공중합체를 합성하였고, 1H-NMR과 FT-IR 분석을 통해 술폰화가 되었음을 확인 하였다. 혼합물 분리를 위한 투과증발 실험 장치를 제작하여 sulfonated SEBS막을 제조하여 벤젠 조성 변화에 따른 투과증발 실험을 실시하였으며, 그에 따른 투과유량 및 투과도를 계산하여 투과특성을 확인하였다.
분리막을 이용한 투과증발법은 에너지 소모가 적고 경제적이며 환경친화적이기 때문에 분자스케일 액체/액체 분리에 있어서 매우 주목 받고 있는 기술이다. 방향족 화합물과 지방족 화합물을 분리하는 공정은 석유정제, 석유화학공정 등에서 특히 중요한 분리공정 중의 하나이다. 본 연구에서는 벤젠에 대한 고선택성을 나타내는 PEG가 함유된 폴리이미드 공중합체를 합성하였고, 1H-NMR 스펙트럼과 FT-IR 스펙트럼에서 PEG 특성 피크의 확인을 통하여 PEG가 도입되었음을 확인 하였다. 혼합물 분리를 위한 투과증발 실험 장치를 제작하여 PEG 함량이 다른 막을 제조하여 벤젠 조성 변화에 따른 투과증발 실험을 실시하였으며, 그에 따른 투과유량 및 투과도를 계산하여 투과특성을 확인하였다.