검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,842

        281.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In this study, the effects of adding a superabsorbent polymer (SAP) to the concrete mixture on the strength of the concrete and abrasion resistance were analyzed, and whether the property of concrete can be improved by the internal curing effect of SAP was evaluated. METHODS: In this study, a total of eight different mixes were tested. The amounts of SAP added were 0%, 0.6%, 1.2% while that of silica fume were 0% and 6% based on the weight of the binder. The compressive test, rapid chloride penetration resistance test, and abrasion test were performed to verify the internal curing effects of SAP. RESULTS : The compressive test showed that SAP concrete had greater compressive strength than ordinary concrete. Comparison of the compressive strengths of dry and wet cured specimens of each mixture showed that SAP concrete had a smaller difference compared with ordinary concrete. The rapid chloride resistance test showed that SAP did not increase chloride penetration resistance. However, since this experiment only considered wet curing, further investigation of dry curing is necessary. The abrasion resistance test showed that for the case of concrete cured under dry conditions without spraying the curing compound, the abrasion resistance of the SAP concrete improved by approximately 49% at 14 days and 27% at 28 days of curing compared with ordinary concrete. CONCLUSIONS : The effect of SAP on the strength and abrasion resistance of concrete was analyzed. The results showed that the internal curing effect of SAP improved concrete strength and abrasion resistance. The internal curing effect maintains the overall internal humidity in concrete by supplying water held by the SAP to the dried cement paste.
        4,000원
        282.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근에는 다양한 중량의 구조물을 지진으로부터 보호하기 위해 지반으로부터 분리하는 면진장치로써 지반 격리용 받침이 활용된다. 지진의 피해를 저감시키는 설계방법 중에서 면진 설계는 구조물과 지반이 만나는 부분에 면진받침을 사용하는 방식으로 다른 내진/제진 설계 방법과 비교하면 가격대비 효율과 성능이 가장 우수하다. 본 연구에서는 지진 발생 이후 지속적으로 사용 가능한 새로운 개념의 자동복원 면진받침 시스템을 제안하고자 한다. 이러한 면진받침에 대한 성능을 검증하기 위하여 이론 적립 및 설계를 수행하고 실험체를 제작하여 실제 지진 데이터가 적용된 진동대 실험을 수행하였다. 기본특성실험, 면압의존성 실험, 속도의존성 실험, 변위의존성 실험에서 강도하중이 설계 목표치와 유사하였고, 거동 또한 설계값과 유사함을 확인하였고 이를 바탕으로 면진받침의 성능 검증을 분석하였다.
        4,000원
        283.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to analyze not only the strength but also the durability and abrasion resistance of concrete pavements as increasing the cases of domestic concrete pavement damage which do not meet the service years. METHODS: The bottom layer of a two-lift concrete pavement was paved with original Portland cement (OPC) with 20~23 cm thickness. On the other hand, the top-layer, which is directly exposed to the environment and vehicles, was paved with high-performance concrete (HPC) with 7~10 cm thickness. For the optimal mixed design of the top-layer material of a two-lift concrete pavement, silica fume and polymer powder were mixed. Furthermore, it analyzes abrasion resistance of concrete as follow‘ ASTM C 779’which is dressing wheel abrasion test method. RESULTS : As a result, abrasion resistance is improved with increasing the silica fume ratio. When the polymer powder is mixed, abrasion resistance of concrete is much improved. However, the effect of mixing ratio is not significant. It is very effective that adding both silica fume and polymer powder occur 20~40% of abrasion comparing with OPC variables. CONCLUSIONS : The concrete strength and durability increased with silica fume and polymer powder. In particular, it is significant increasing strength of polymer powder under the flexural strength. In the abrasion resistance side, it is also significant when the silica fume and polymer powder used together.
        4,000원
        285.
        2018.11 구독 인증기관·개인회원 무료
        Anion exchange membrane (AEM) with fixed charged cationic groups can selectively transport anionic molecules such as hydroxide anions. The AEM materials have been widely used in the wide range of applications such as polymer electrolyte fuel cells, water electrolysis, and reverse electrodialysis and electrodialysis. Commercially available AEM materials show high electrochemical resistance owing to their chemical architectural features leading to less separated hydrocarbon morphologies. Very low solubility to casting solvents and weak chemical durability to alkaline atmosphere of the AEM materials also makes it difficult to make thin and tough AEM membranes. In this study, AEM materials composed of perfluorinated architectures with improved chemical durability and intrinsically well separated morphologies were developed and evaluated.
        286.
        2018.11 구독 인증기관·개인회원 무료
        Perfluorinated sulfonic acid (PFSA) ionomers have been commonly used as representative polymer electrolyte membrane (PEM) materials for fuel cell electric vehicles owing to their fast proton transport and excellent chemical resistance. However, PFSA materials still have weakness associated with chemical degradation occurring as a result from radical attacks, which induce membrane thickness reduction, leading to hydrogen crossover, and/or reduced electrochemical performances. In this study, cerium derivative radical scavengers were designed as functional additives to enhance the chemical durability of PFSA PEM. Their optimum content was suggested, comprehensively considering their radical resistance as well as other fundamental characteristics associated with long-term durability and electrochemical performance.
        300.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a food-borne bacterial pathogen that causes various diseases in both humans and animals such as hemorrhagic colitis and hemolytic uremic syndrome. Because cattle are the main reservoir of this microorganism, undercooked meat and meat byproducts contaminated with EHEC O157:H7 are most commonly associated with epidemic disease outbreaks. As an enteric pathogen, EHEC O157:H7 enters the body via a fecal-oral route and must survive passage through the gastric stomach at pH 1.5 to 3.5 to establish an infection within the gastrointestinal tracts. Therefore, the ability to resist such acidic environments is important to the pathogenesis of EHEC O157:H7 during a host infection. In this review, we will discuss on the acid resistance (AR) mechanisms induced by EHEC O157:H7 when E. coli encounters acidic environments.
        4,000원