검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 30

        21.
        2019.10 서비스 종료(열람 제한)
        공동구용 수직구 접속부는 부등침하 발생, 지하수위 저감, 지진 등 동하중에 의한 상대변위 발생 등의 문제점이 야기되고 있다. 현재 국내에서는 수직구 접속부 시공 시 지반안정화를 위한 각종 공법을 적용하고 있으나, 접속부에 대해 직접적인 보강/차수 기술 적용은 전무한 실정이다. 따라서 본 연구에서는 공동구용 수직구 접속부에서 야기되고 있는 문제점을 상쇄할 수 있는 공동구용 수직구 접속부 보강/차수 장치 시제품을 개발하였다.
        22.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        This paper deals with the development and application of control algorithms for series elastic relief robots for rescue operations in harsh environment like disasters or battlefield. The joint controller applied in this paper has a cascade structure combining inner loop for torque control and outer loop for position control. The torque loop contains feedforward and feedback controller and disturbance observer for independent, decentralized joint control. The effect of the elastic component and motor dynamics are treated as the nonlinear disturbance and compensated with the disturbance observer of torque controller. For the collision detection, Band Designed Disturbance Observer is configured to recognize/respond to external disturbance robustly in the continuously changing environment. The controller is applied to a 7-dof series elastic manipulator to evaluate the torque tracking and collision detection/response performance.
        23.
        2017.09 서비스 종료(열람 제한)
        Shield tunnel-shaft joint has caused problems in use which has different soil condition and boundary condition according to structure type. For solving this problems we developed joint reinforcing and inflow water cut-off system which can ensure stability of shield tunnel-shaft and reduce costs of maintenance.
        24.
        2014.11 KCI 등재 서비스 종료(열람 제한)
        In this study, we have developed the humanoid joint modules which provide a variety of service while living with people in the future home life. The most important requirement is ensuring the safety for humans of the robot system for collaboration with people and providing physical service in dynamic changing environment. Therefore we should construct the mechanism and control system that each joint of the robot should response sensitively and rapidly to fulfill that. In this study, we have analyzed the characteristic of the joint which based on the target constituting the humanoid motion, developed the optimal actuator system which can be controlled based on each joint characteristic, and developed the control system which can control an multi-joint system at a high speed. In particular, in the design of the joint, we have defined back-drivability at the safety perspective and developed an actuator unit to maximize. Therefore we establish a foundation element technology for future commercialization of intelligent service robots.
        25.
        2014.10 서비스 종료(열람 제한)
        For the corner joint strengthening of the underground box structures, the strengthening method using pressure members was developed. By the applied pressure on the reinforcing members and the increase of nominal strength due to reinforcing member, the size of the reinforcing members are reduced and the performance of corner joint strengthening is improved.
        26.
        2011.08 KCI 등재 서비스 종료(열람 제한)
        This paper focuses on a development of an anthropomorphic robot hand. Human hand is able to dexterously grasp and manipulate various objects with not accurate and sufficient, but inaccurate and scarce information of target objects. In order to realize the ability of human hand, we develop a robot hand and introduce a control scheme for stable grasping by using only kinematic information. The developed anthropomorphic robot hand, KITECH Hand, has one thumb and three fingers. Each of them has 4 DOF and a soft hemispherical finger tip for flexible opposition and rolling on object surfaces. In addition to a thumb and finger, it has a palm module composed the non-slip pad to prevent slip phenomena between the object and palm. The introduced control scheme is a quitely simple based on the principle of virtual work, which consists of transposed Jacobian, joint angular position, and velocity obtained by joint angle measurements. During interaction between the robot hand and an object, the developed robot hand shows compliant grasping motions by the back-drivable characteristics of equipped actuator modules. To validate the feasibility of the developed robot hand and introduced control scheme, collective experiments are carried out with the developed robot hand, KITECH Hand.
        27.
        2009.11 KCI 등재 서비스 종료(열람 제한)
        Various driving mechanisms to adapt to uneven environment have been developed for many urban search and rescue (USAR) missions. A tracked mechanism has been widely used to maintain the stability of robot’s pose and to produce large traction force on uneven terrain in this research area. However, it has a drawback of low energy efficiency due to friction force when rotating. Moreover, single tracked mechanism can be in trouble when the body gets caught with high projections, so the track doesn’t contact on the ground. A transformable tracked mechanism is proposed to solve these problems. The mechanism is designed with several articulations surrounded by tracks, used to generate an attack angle when the robot comes near obstacles. The stair climbing ability of proposed robot was analyzed since stairs are one of the most difficult obstacles in USAR mission. Stair climbing process is divided into four separate static analysis phases. Design parameters are optimized according to geometric limitations from the static analysis. The proposed mechanism was produced from optimized design parameters, and demonstrated in artificially constructed uneven environment and the actual stairway.
        28.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        In this paper, the prototype of surface EMG (ElectroMyoGram) sensor is developed for the robotic rehabilitation applications, and the developed sensor is composed of the electrodes, analog signal amplifiers, analog filters, ADC (analog to digital converter), and DSP (digital signal processor) for coding the application example. Since the raw EMG signal is very low voltage, it is amplified by about one thousand times. The artifacts of amplified EMG signal are removed by using the band-pass filter. Also, the processed analog EMG signal is converted into the digital form by using ADC embedded in DSP. The developed sensor shows approximately the linear characteristics between the amplitude values of the sensor signals measured from the biceps brachii of human upper arm and the joint angles of human elbow. Finally, to show the performance of the developed EMG sensor, we suggest the application example about the real-time human elbow motion acquisition by using the developed sensor.
        1 2