검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        22.
        2014.09 서비스 종료(열람 제한)
        Reactive oxygen species (ROS) are produced in organisms as the natural products of oxidative metabolism by environmental stress and pathogen invasion. ROS, such as superoxide anion and hydrogen peroxide, can be toxic to cells and tissues to cause oxidative stress. Recent study revealed that olive flounder (Paralichthys olivaceus) superoxide dismutase (SOD) has been identified as a partial gene and strongly induced to benzoin[a]pyrene and it was deduced indicator of aquatic oxidative stress responses, but its transcriptional response against viral infection has not been investigated. In the present study, spatial and temporal expression profile was analyzed to investigate the function of Of-SOD in the anti-viral response. Of-SOD transcripts were ubiquitously detected in diverse tissues with variable levels using a real-time PCR. The expression of Of-SOD was significantly higher in the muscle, liver and brain, but extremely low in the stomach and spleen. Following VHSV challenge, the expression of Of-SOD increased within 3 hours and subsequently decreased to the original level at 2 days post-challenge in kidney. Although expression pattern and induction time are slight differences depending on the tissue, the transcript of Of-SOD was consistently increased in acute infection response, but expression is low in the chronic response. Collectively, Of-SOD expressions were inducible after VHSV infection and they were probably involved in the immune response against viral challenge. These results suggest that SODs may play important roles in the immune defense system of P. olivaceus and perhaps contribute to the protective effects against oxidative stress in this flounder.
        1 2