검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 26

        21.
        2011.09 KCI 등재 서비스 종료(열람 제한)
        Nesfatin-1/NUCB2, which is secreted from the brain, is known to control appetite and energy metabolism. Recent studies have been shown that nesfatin-1/NUCB2 was expressed not only in the brain, but it was also expressed in the gastric organs and adipose tissue. However, little is known about the expression of nesfatin-1/NUCB2 in the male reproductive system. Therefore, we examined whether the nesfatin-1/NUCB2 and its binding site exists in the male reproductive organs. Nesfatin-1/NUCB2 mRNA and protein were detected in the mouse testis and epididymis by PCR and Western blot analysis. As a result of the immunohistochemistry staining, the nesfatin-1 protein was localized at the interstitial cells and Leydig cells in the testis. Nesfatin-1 binding sites were also displayed at boundary cells in the tunica albuginea. Furthermore, in order to examine if the expression of nesfatin-1/NUCB2 mRNA in the testis and epididymis were affected by gonadotropin, its mRNA expression was analyzed after PMSG administration into mice. NUCB2 mRNA expression levels were increased in both of the testis and epididymis after PMSG administration. These results demonstrated for the first time that nesfatin-1 and its binding site were expressed in the mouse testis and epididymis. In addition, nesfatin-1/NUCB2 mRNA expression was controlled by gonadotropin, suggesting a possible role of nesfatin-1 in the male reproductive organs as a local regulator. Due to this, further study is needed to elucidate the functions of nesfatin-1 on the male reproductive system.
        22.
        2011.09 서비스 종료(열람 제한)
        Foxi1, a forkhead family of transcription factor, in narrow and clear cells in epididymis is required for male fertility through regulating transcription of vacuolar H+-ATPase. To understand the regulation of Foxi1 gene activation in epididymis, the effects of steroids and their receptor antagonists and testicular factors on the expression of Foxi1 in epididymal segments were examined in mouse. Epididymis were sampled from adult mice following injections of ICI 182,780 (5mg/head, 2 times for 15 days), dexamethasone (DEX, 0.1,1,10ug/kg/day for 5 days) or oral administration of flutamide (FLM, 100mg/kg/day for 10 days). Otherwise, adult mice were orchidectomized (ORX), rested for 2 weeks, and received testosterone propionate(TP, 3mg/kg/day) for 7 days. In addition, adult male mice were subjected to efferent duct ligation (EDL) and epididymis was collected after 15 days. To study estrogen regulation of Foxi1 gene activation via estrogen receptor α (ESR1), Foxi1 expression was examined in ESR1 knock-out mice epididymis. Expression and subcellular localization of Foxi1 was analyzed by realtime RT-PCR and immunohistochemistry. To search transcription factor binding in the mouse Foxi1 gene promoter, in silico analysis was performed using TESS, TFSEARCH, and Gene-Regulation. ICI 182,780 significantly decreased Foxi1 mRNA levels in caput and corpus but increased in cauda epididymis. Foxi1 mRNA levels in caput epididymis of ESR1 KO mice were significantly lower than those of WT mice, but no significantly changed in corpus and cauda epididymis. Taken together, estrogen differentially regulates Foxi1 gene expression in epididymis. In ORX mice, Foxi1 mRNA levels were significantly increased in epididymis, and which was abrogated by TP. Though FLM did not significantly alter the Foxi1 mRNA levels, androgen may affect Foxi1 gene expression in epididymis. DEX significantly decreased Foxi1 mRNA levels in caput and corpus epididymis at 0.1ug/kg/day and in cauda epididymis at 1ug/kg/day, suggesting that glucocorticoid may negatively regulate Foxi1 gene expression. No significant change in Foxi1 mRNA levels was found after EDL. Foxi1 immunoreactivity was found in the nuclei of narrow cells of caput epididymis including initial segment and clear cells of corpus and cauda epididymis. Of note, in ORX mice, Foxi1-positive narrow cells and clear cells were increased, and which was abrogated by TP. In silico analysis revealed the presence of putative binding sequences for ESR1, AR, and GR in the 5’ upstream region from the Foxi1 promoter. In conclusion, the expression of Foxi1 in narrow cells in caput epididymis might be positively regulated by estrogen via ESR1, which was different from estrogen–ESR signaling in clear cells in corpus and cauda epdididymis. Androgen and glucocorticoid may negatively regulate expression of Foxi1 in all epdididymial segments.
        23.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        Ethane 1,2-dimethane sulfonate(EDS)는 Leydig 세포의 선별적 사멸을 유도하는 약물로서 가역적인 테스토스테론 결핍 흰쥐를 만드는데 널리 사용된다. 부정소의 구조와 기능 유지는 크게 보아 정소에서 분비되는 테스토스테론에 의존적이지만, 테스토스테론으로부터 유도되는 dihydroxytestosterone(DHT)와 에스트로겐도 중요한 역할을 한다. 본 연구에서는 EDS 주사 후 7주까지 부정소에서의 스테로이드 호르몬 수용체, c
        24.
        2006.10 KCI 등재 서비스 종료(열람 제한)
        Ethane 1,2-Dimethane sulfonate(EDS)은 Leydig cells(LC)만을 선별적 사멸을 유도하는 약물로서 가역적인 테스토스테론 결핍 흰쥐 모델을 만드는데 널리 사용된다. EDS 투여에 의해 유도된 'LC 녹아웃' 흰쥐의 경우 부정소와 저정낭과 같은 테스토스테론 의존성 부속 생식기관들의 급격한 무게 감소가 초래됨이 이전의 연구들에서 보고되었는데, 이러한 무게 감소의 상당 부분은 세포자연사에 의한 것으로 보인다. 본 연구는 흰쥐
        25.
        2001.12 KCI 등재 서비스 종료(열람 제한)
        Ulex europaeus agglutinin I(UEA I), succinylated wheat germ agglutinin(sWGA), Griffonia simplicifolia lectin-I(GSL-I)을 이용하여 생쥐 부정소 조직내 당쇄의 분포를 조사하였다. 당쇄의 측쇄 말단의 -L-fucose 잔기에 특이적으로 결합하는 UEA I은 체부 및 미부 부정소를 제외한 두부 부정소 선단의 세정관 상피를 강하게 표지하였으나 관강은 중간 정도의 강도로
        26.
        1997.12 KCI 등재 서비스 종료(열람 제한)
        Guanidinoacetate N-methyltransferase (GAMT) catalyzes the last step of creatine biosynthesis and the resultant creatine plays an important role in cellular energy metabolism. GAMT is mainly found in liver, kidney as well as testis and epididymis. We have localized the site of creatine biosynthesis in mouse epididymis by immunoperoxidase staining of GAMT using anti-GAMT antibody. Gamt is extensively expressed in the microvilli of epididymal epithelial cells and also expressed weakly in the cyto plasm of the cells. The staining of GAMT was most prominent in the microvilli of proximal caput epididymis and the intensity was progressively diminished as the epididymal tubule proceeds toward caudal part. The result suggests that GAMT or Cr might be involved in sperm function and/or maturation process in epididymis.
        1 2