검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        21.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        Engineered nanomaterials (ENMs) can be released to humans and the environment through the generation of waste containing engineered nanomaterials (WCNMs) and the use and disposal of nano-products. Nanoparticles can also be introduced intentionally or unintentionally into waste streams. This study examined WCNMs in domestic industries, and target nanomaterials, such as silicon dioxide, titanium oxide, zinc oxide, nano silver, and carbon nanotubes (CNTs), were selected. We tested 48 samples, such as dust, sludge, ash, and by-products from manufacturing facilities and waste treatment facilities. We analyzed leaching and content concentrations for heavy metals and hazardous constituents of the waste. Chemical compositions were also measured by XRD and XRF, and the unique properties of nano-waste were identified by using a particle size distribution analyzer and TEM. The dust and sludge generated from manufacturing facilities and the use of nanomaterials showed higher concentrations of metals such as lead, arsenic, chromium, barium, and zinc. Oiled cloths from facilities using nano silver revealed high concentrations of copper, and the leaching concentrations of copper and lead in fly ash were higher than those in bottom ash. In XRF measurements at the facilities, we detected compounds such as silicon dioxide, sulfur trioxide, calcium oxide, titanium dioxide, and zinc oxide. We found several chemicals such as calcium oxide and silicon dioxide in the bottom ash of waste incinerators.
        22.
        2012.07 서비스 종료(열람 제한)
        Sorghum is the fifth most important cereal in the world as one of the staple food. For the use of natural dye, we have done some researches about sorghum red pigments extracted from stalk and leaves on its physiochemical properties, extracting methods and applications. The researches involved maximum extraction of sorghum pigment and analysis of its processing condition. Total polyphenol and tannin contents were measured by varieties and different plant parts. The stabilities of pigment by irradiation and heat treatment for processing were measured by colorimeter and thermal gravimetric analysis (TGA). In addition, hybrid nano-silica composites with sorghum pigment were made by combining with polyvinyl alcohol, polyvinyl acetate and sodium silicate. Water silica hybrids with sorghum pigment were performed by emulsion treatment. Nano-silica particles were identified and measured their size to be about 200 ~ 400 nm by SEM analysis.
        1 2