검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 644

        402.
        2004.06 구독 인증기관·개인회원 무료
        Using the high-frequency induction heated combustion method, the simultaneous synthesis and densification of (x=0, 10, 20, 30) composites was accomplished using elemental powders of W, Si and C. A complete synthesis and densification of the materials was achieved in one step within a duration of 2 min. The relative density of the composite was up to 97% for the applied pressure of 60MPa and the induced current. The average grain size of are 6.9, 6.1, and , respectively. The hardness and the fracture toughness increases with increasing SiC content. The maximum values for the hardness and fracture toughness are .
        404.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Performance of carbon-carbon composites is known to be influenced by the fibre matrix interactions. The present investigation was undertaken to ascertain the development of microstructure in such composites when carbon fibres possessing different surface energies (T-300, HM-35, P120 and Dialed 1370) and pitch matrices with different characteristics (Coal tar pitch SP110℃ and mesophase pitch SP285℃) are used as precursor materials. These composites were subjected to two different heat treatment temperatures of 1000℃ and 2600℃. Quite interesting changes in the crystalline parameters as well as the matrix microstructure are observed and attempt has been made to correlate these observations with the fibre matrix interactions.
        4,000원
        408.
        2004.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The main goal of this work is to study the effect of glass fiber volume fraction on the result of tensile test with respect to glass fiber/polypropylene(GF/PP) composites. The tensile test and failure mechanisms of GF/PP composites were investigated in the fiber volume fraction range from 10% to 30%. The tensile strength and the fracture strength increased with the increasing of the fiber volume fraction in the tested range. Fiber pull-out and debonding of this composites increased with the fiber volume fraction in thc tested range. The major failure mechanisms were classified into the debonding, the fiber pull out, the delamination and the matrix deformation.
        4,000원
        410.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of liquid phase and reinforcing particle morphology on the sintering of Al-6 wt%Cu-10 vol% or SiC particles were studied in regards to densification, structure and transverse rupture properties. The Al-Cu liquid phase penetrated the boundaries between the aluminum matrix powders and the interfaces with reinforcing particles as well, indicating a good wettability to the powders. This enhanced the densification during sintering and the resulting strength and ductility. Since most of the copper added, however, was dissolved in the liquid phase and formed a brittle phase upon cooling rather than alloyed with the aluminum matrix, the strengthening effect by the copper was not fully realized. Reinforcing particles of agglomerate type were found less suitable for the liquid phase sintering than solid type particles. and SiC particles protluced little difference on the sintering behavior but their size had a large effect. Repressing of the sintered composites increased density and bending properties but caused debonding at the matrix-particle interfaces and also fracturing of the particles.
        4,000원
        411.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The failure behaviours of unidirectional pultruded carbon fiber reinforced polymer (CFRP) composites were monitored by the electrical resistance measurement during tensile loading, three-point-bending, interlaminar shear loading. The tensile failure behaviour of carbon fiber tows was also investigated by the electrical resistance measurement. Infrared thermography non-destructive evaluation was performed in real time during tensile test of CFRP composites to validate the change of microdamage in the materials. Experiment results demonstrated that the CFRP composites and carbon fiber tows were damaged by different damage mechinsms during tensile loading, for the CFRP composites, mainly being in the forms of matrix damage and the debonding between matrix and fibers, while for the carbon fiber tows, mainly being in the forms of fiber fracture. The correlation between the infrared thermographs and the change in the electrical resistance could be regarded as an evidence of the damage mechanisms of the CFRP composites. During three-point-bending loading, the main damage forms were the simultaneity fracture of matrix and fibers firstly, then matrix cracking and the debonding between matrix and fiber were carried out. This results can be shown in Fig. 9(a) and (b). During interlaminar shear loading, the change in the electrical resistance was related to the damage degree of interlaminar structure. Electrical resistance measurement was more sensitive to the damage behaviour of the CFRP composites than the stress/time curve.
        4,000원
        412.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan δ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.
        4,000원
        413.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrical and thermal conductivity of W-Cu composites were investigated as a function of the W-particle size and W-W contiguity. Powder mixtures were prepared by ball milling or mechanical alloying process, and then sintered at various temperatures. The electrical conductivity of sintered composite was increased with decreasing W grain size. Dependence of electrical conductivity on the W grain size was explained by the W-W contiguity concept. The thermal conductivity was increased with increasing the temperature up to but decreased at the temperature above Also, thermal conductivity value was influenced by the W particle size. Change of thermal conductivity in W-Cu composites was discussed based on the observed microstructural characteristics and theoretical considerations.
        4,000원
        415.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        416.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The “Film boiling” Chemical Vapor Infiltration (CVI) process is a rapid densification one developed in particular for theelaboration of carbon/carbon composite materials. In order to optimize this new thermal gradient process, we have carried outseveral studies, on one hand, about the nature of the complex chemical reactions in a confined medium, and on the other hand,relative to the role of heat and mass transfers inside the preform. We show in this study that the introduction of a permeablesheath around the preform leads to hybrid liquid/gas CVI process which presents the advantages of very high densificationrates associated with a moderate input energy.
        4,000원
        418.
        2003.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        하이브리드 복합재료(Hybrid composite)의 모드 I 층간파괴인성치에 영영향 주는 인자 중 적층순서, 하중점변위율, 초기크랙길이를 변화 시켰을 때의 실험 결과는 다음과 같다. (1) CF/CF, CF/GF, GF/GF로 적층하였을 경우 층간파괴인성치값은 서로 같은 계면을 성형한 것보다 서로 다른 계면을 적층한 CF/GF 의 경우가 강도면에서 가장 높게 나타나는 것을 알 수 있다. (2) 하중점변위율을 0.2, 2, 20mm/min로 변화하였을 때, 미세한 변동은 있었으나, 허중점변위율의 영향은 거의 받지 않는 것을 알 수 있었다. (3) 초기크랙을 25, 30, 35, 40, 50mm로 변화시켰을 때 초기크랙길이의 영향은 일정하지 않았다. CF/CF인 경우는 초기크랙이 짧은 경우, CF/GF, GF/GF인 경우는 초기크랙이 긴 경우에 높은 값을 나타냈다. 이것은 GF 섬유가 직조형태의 프리프레그로 되어 있어 크랙의 진전에 따라 섬유부스러기 등의 생성에 따른 영향이라고 생각된다. (4) 적층순서에 따라 파면의 섬유 분포 형태가 달랐으며, CF/GF인 경우가 섬유의 파손형태가 가장 복잡하게 나타났으며, 이것이 높은 층간파괴인성치를 나타내는 원인이라고 판단된다.
        4,000원
        419.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon/carbon composites are ideal candidates for a number of aerospace applications including structural materials for advanced vehicles, leading edges, structures of re-entry and hypersonic vehicles and propulsion systems. One serious defect for such application of the carbon/carbon composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating was employed to protect the composites from oxidation. It is mechanically and chemically stable under extreme thermal and oxidative environments, provides good adhesion to the substrate, and offers good thermal shock resistance. The SiC layer on the nozzle machined from the carbon/carbon composites was formed by pack-cementation method. Then, erosion characteristic of SiC coated carbon/carbon nozzle was examined by combustion test using a liquid rocket motor. The erosion rates were measured as function of combustion pressure, ratio of oxygen to fuel, combustion time, density of the composites and geometry of reinforced carbon fibre in the composites. The morphology change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.
        4,000원
        420.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon/carbon composites were developed using PAN based carbon fibres and phenolic resin as matrix in different volume fractions and heat treated to temperatures between 1000℃ to 2500℃. Although both the starting precursors are nongraphitizing hard carbons individually, their composites lead to very interesting properties e.g. x-ray diffractograms show the development of graphitic phase for composites having fibre volume fractions of 30~40%. Consequently the electrical resistivity of such composites reaches a value of 0.8 mΩcm, very close to highly graphitic material. However, it was found that by increasing the fibre volume fraction to 50~60%, the trend is reversed. Optical microscopy of the composites also reveals the development of strong columnar type microstructure at the fibre (matrix interface due to stress graphitization of the matrix. The study forcasts a unique possibility of producing high thermal conductivity carbon/carbon composites starting with carbon fibres in the chopped form only.
        4,000원