In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.
Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with 500 oC/2 h oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.
This paper addresses the effect of dopants on the electronic properties of zigzag (8, 0) semiconducting single walled carbon nanotubes (SWCNTs), using extended Hückel theory combined with nonequilibrium Green’s function formalism. Through appropriate dopant concentrations, the electronic properties of SWCNTs can be modified. Within this context, we present our ongoing investigation on (8, 0) SWCNTs doped with nitrogen. Quantum confinement effects on the electronic properties of the SWCNTs have also been investigated. The obtained results reveal that the electronic properties of SWCNTs are strongly dependent on the dopant concentration and modification of electronic structures by hydrogen confinement.
Multi-walled carbon nanotube (MWCNT)/polycarbonate (PC) nanocomposite was prepared by direct melt mixing to investigate the effect of the shear rate on the surface resistivity of the nanocomposites. In this study, an experiment was carried out to observe the shear induced orientation of the MWCNT in the polymer matrix using a very simple melt flow indexer with various loads. The compression-molded, should be eliminated. MWCNT/PC nanocomposite sample exhibited lower percolation thresholds (at 0.8 vol%) and higher electrical conductivity values than those of samples extruded by capillary and injection molding. Shear induced orientation of MWCNT was observed via scanning electron microscopy, in the direction of flow in a PC matrix during the extrusion process. The surface resistivity rose with increasing shear rate, because of the breakdown of the network junctions between MWCNTs. For real applications such as injection molding and the extrusion process, the amount of the MWCNT in the composite should be carefully selected to adjust the electrical conductivity.
In this study, titanium(Ti) meshes and porous bodies are employed to synthesize carbon nanotubes(CNTs) using methane(CH4) gas and camphene solution, respectively, by chemical vapor deposition. Camphene is impregnated into Ti porous bodies prior to heating in a furnace. Various microscopic and spectroscopic techniques are utilized to analyze CNTs. It is found that CNTs are more densely and homogeneously populated on the camphene impregnated Ti-porous bodies as compared to CNTs synthesized with methane on Ti-porous bodies. It is elucidated that, when synthesized with methane, few CNTs are formed inside of Ti porous bodies due to methane supply limited by internal structures of Ti porous bodies. Ti-meshes and porous bodies are found to be multi-walled with high degree of structural disorders. These CNTs are expected to be utilized as catalyst supports in catalytic filters and purification systems.
본 연구에서는 메탄 대향류 확산 화염내 탄소나노튜브의 합성에 대하여 실험 및 수치적 연구를 수행하였다. 아세틸렌을 일정비율로 메탄에 혼합하여 연료 가스로 사용하였으며, 탄소나노튜브의 합성을 위한 촉매로서 페로센이 이용되었다. 주요 인자로는 메탄 연료에 대한 아세틸렌의 혼합비율이며, 2 %, 6 %, 10 %로 혼합하였다. 탄소나노튜브를 채취한 그리드 위의 탄소나노튜브 합성 특성은 SEM 이미지로 분석되었다. 수치해석에서 화학반응 메카니즘으로는 GRI-Mech 3.0 이 적용되었다. 수치결과로는 아세틸렌 혼합 비율이 증가할수록 화염 온도도 증가하며 CO 몰분율도 증가하는 것을 알 수 있다. 실험결과로는 2% 아세틸렌 혼합 화염이 6 % 및 10 % 혼합 화염과 비교해 탄소나노튜브 합성이 잘 이루어졌음을 알 수 있었다. 이것은 6 % 및 10 % 아세틸렌 혼합화염의 경우 과도한 카본 소스의 생성이 발생해 오히려 화염 내 카본소스가 촉매입자로의 공급을 방해하기 때문이라 생각한다. 이 결과로부터 양호한 질의 탄소나노튜브 생성을 위해서는 적정한 양의 카본소스가 생성되어야 한다는 것을 알 수 있었다.
Multi-walled carbon nanotube reinforced epoxy composites were fabricated using shear mixing and sonication. The mechanical, viscoelastic, thermal, and electrical properties of the fabricated specimens were measured and evaluated. From the images and the results of the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content showed better dispersion and higher strength than those of the other specimens. The Young's moduli of the specimens increased as the nanotube filler content was increased in the matrix. As the concentrations of nanotubes filler were increased in the composite specimens, their storage and loss moduli also tended to increase. The specimen having a nanotube filler content of 0.6 wt% showed higher thermal conductivity than that of the other specimens. On the other hand, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value than that of the other specimens. The electrical conductivities also increased with increasing content of nanotube filler. Based on the measured and evaluated properties of the composites, it is believed that the simple and efficient fabrication process used in this study was sufficient to obtain improved properties in the specimens.
A filtration-tapingmethod was demonstrated to fabricate carbon nanotube (CNT) emitters. This method shows many good features, including high mechanical adhesion, good electrical contact, low temperature, organic-free, low cost, large size, and suitability for various CNT materials and substrates. These good features promise an advanced fieldemission performance with a turn-on fieldof 0.88 V/mm at a current density of 0.1 mA/cm2, a threshold fieldof 1.98 V/mm at a current density of 1 mA/cm2, and a good stability of over 20 h. The filtratio-taping technique is an effective way to realize low-cost, large-size, and high-performance CNT emitters.
Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive fil-er, for example, carbon black, carbon fibers,graphite or carbon nanotubes (CNTs). The criti-cal amount of the electrically conductive fillernecessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conduc-tive-fillerpercolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-fillerinteractions, as well as the processing and morphological devel-opment of low-percolation-threshold (Φc) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mix-ing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filledwith MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (Φc) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a perco-lation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVD, PP/PVDF, volume ratio 1:1) filled with MWCN.
A powder-in-sheath rolling method was applied to a fabrication of a carbon nano tube (CNT) reinforcedaluminum composite. A STS304 tube with an outer diameter of 34 mm and a wall thickness of 2 mm was used as asheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol was filled inthe tube by tap filling and then processed to 73.5% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the powder-in-sheath rolling decreased slightly with increasing of CNTs content, but exhib-ited high value more than 98. The grain size of the aluminum matrix was largely decreased with addition of CNTs; itdecreased from 24 µm to 0.9 µm by the addition of only 1 volCNT. The average hardness of the composites increasedby approximately 3 times with the addition of CNTs, comparing to that of unreinforced pure aluminum. It is concludedthat the powder-in-sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.
We demonstrated size control of Au nanoparticles by heat treatment and their use as a catalyst for single-walled carbon nanotube (SWNTs) growth with narrow size distribution. We used uniformly sized Au nanoparticles from commercial Au colloid, and intentionally decreased their size through heat treatment at 800 oC under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates to achieve parallel alignment of the SWNTs and to investigate the size relationship between Au nanoparticles and SWNTs. After the SWNTs were grown via chemical vapor deposition using methane gas, it was found that a high degree of horizontal alignment can be obtained when the particle density is low enough to produce individual SWNTs. The diameter of the Au nanoparticles gradually decreased from 3.8 to 2.9 nm, and the mean diameter of the SWNTs also changed from 1.6 to 1.2 nm for without and 60 min heat treatment, respectively. Raman results reconfirmed that the prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distribution. This work demonstrated that heat treatment can be a straightforward and reliable method to control the size of catalytic nanoparticles and SWNT diameter.
본 연구에서는 탄소나노튜브와 폴리프로필렌 기지 간 계면결합력과 나노튜브의 국부적 응집에 따른 나노복합재의 탄소성거동 변화에 대한 파라메트릭 연구를 수행한다. 나노복합재의 탄소성 거동 예측을 위해 분자동역학 전산모사를 수행하고, 분자동역학 결과와 Mori-Tanaka 모델을 적용한 비선형 미시역학 모델을 연계하여 나노복합재 내 흡착계면의 탄소성 거동을 역으로 도출하는 2단계 영역분할 기법을 적용하였다. 미시역학 모델에서는 시컨트 계수방법을 Mori-Tanaka 모델에 적용하여 나노복합재의 비선형 거동을 예측하는 방법을 적용하였으며, 나노튜브와 기지 간 재료계면의 불완전 결합을 고려하기 위해 변위 불연속 조건을 적용하였다. 흡착영역을 고려한 미시역학 모델을 통해 흡착계면의 유무 및 재료계면 결합력 변화 그리고 나노튜브의 국부적 응집현상에 따른 나노복합재의 응력-변형률 관계를 예측하였다. 그 결과 나노튜브의 국부적 응집이나노복합재의 강화효과를 저하시키는 가장 중요한 변수임을 확인하였다.
Flexible transparent conducting films (TCFs) were fabricated by dip-coating single-wall carbon nanotubes (SWCNTs) onto a flexible polyethylene terephthalate (PET) film. The amount of coated SWCNTs was controlled simply by dipping number. Because the performance of SWCNT-based TCFs is influenced by both electrical conductance and optical transmittance, we evaluated the film performance by introducing a film property factor using both the number of interconnected SWCNT bundles at intersection points, and the coverage of SWCNTs on the PET substrate, in field emission scanning electron microscopic images. The microscopic film property factor was in an excellent agreement with the macroscopic one determined from electrical conductance and optical transmittance measurements, especially for a small number of dippings. Therefore, the most crucial factor governing the performance of the SWCNT-based TCFs is a SWCNT-network structure with a large number of intersection points for a minimum amount of deposited SWCNTs.
In this work, we report in-situ observations of changes in catalyst morphology, and of growth termination of individual carbon nanotubes (CNTs), by complete loss of the catalyst particle attached to it. The observations strongly support the growth-termination mechanism of CNT forests or carpets by dynamic morphological evolution of catalyst particles induced by Ostwald ripening, and sub-surface diffusion. We show that in the tip-growth mode, as well as in the base-growth mode, the growth termination of CNT by dissolution of catalyst particles is plausible. This may allow the growth termination mechanism by evolution of catalyst morphology to be applicable to not only CNT forest growth, but also to other growth methods (for example, floating-catalyst chemical vapor deposition), which do not use any supporting layer or substrate beneath a catalyst layer.
Carbon nanotube-dispersed bismuth telluride matrix (CNT/Bi2Te3) nanopowders were synthesized by chem- ical routes followed by a ball-milling process. The microstructures of the synthesized CNT/Bi2Te3 nanopowders showed the characteristic microstructure of CNTs dispersed among disc-shaped Bi2Te3 nanopowders with as an average size of 500 nm in-plane and a few tens of nm in thickness. The prepared nanopowders were sintered into composites with a homogeneous dispersion of CNTs in a Bi2Te3 matrix. The dimensionless figure-of-merit of the composite showed an enhanced value compared to that of pure Bi2Te3 at the room temperature due to the reduced thermal conductivity and increased electrical conductivity with the addition of CNTs.
It has been demonstrated in a previous study that carbon nanotube (CNT)/epoxy/basalt composites produce better flexural properties than epoxy/basalt composites. In this study, mode I fracture tests were conducted using CNT/epoxy/basalt composites with and without seawater absorption in order to investigate the effect of the seawater absorption on the mode I fracture toughness (GIC) of the CNT/epoxy/basalt composites. The results demonstrated that the compliance of the seawater-absorbed specimen was larger than that of the dry specimen at the same crack length, while the opposite result was obtained for the fracture load. The GIC value of the seawater-absorbed CNT/epoxy/basalt composites was approximately 20% lower than that of the dry CNT/epoxy/basalt composites.
Carbon nanotubes (CNTs) are increasingly attracting scientific and industrial interest because of their outstanding characteristics, such as a high Young's modulus and tensile strength, low density, and excellent electrical and thermal properties. The incorporation of CNTs into polymer matrices greatly improves the electrical, thermal, and mechanical properties of the materials. Surface modification of CNTs can improve their processibility and dispersion within the composites. This paper aims to review the surface modification of CNTs, processing technologies, and mechanical and electrical properties of CNT-based epoxy composites.
A fabrication method to improve the processability of thermoplastic carbon nanotube (CNT) mat composites was investigated by using in-situ polymerizable and low viscous cyclic butylene terephthalate oligomers. The electrical conductivity of the CNT mat composites strongly depended on the compression pressure, and the trend can be explained in terms of two cases, low and high compression pressure, respectively. High CNT mat content in the CNT mat composites and the surface of the CNT mat composites with fully contacted CNTs was achieved under high compression pressure, and direct contact between four probes and the surface of the CNT mat composites with fully contacted CNTs gave resistance of 2.1Ω. In this study the maximum electrical conductivity of the CNT mat composites, obtained under a maximum applied compression pressure of 27 MPa, was 11 904 S m-1, where the weight fraction of the CNT mat was 36.5%.
Carbon nanotubes (CNTs) have exceptional mechanical, electrical, and thermal properties compared with those of commercialized high-performance fibers. For use in the form of fabrics that can maintain such properties, individual CNTs should be held together in fibers or made into yarns twisted out of the fibers. Typical methods that are used for such purposes include (a) surfactant-based coagulation spinning, which injects a polymeric binder between CNTs to form fibers; (b) liquid-crystalline spinning, which uses the nature of CNTs to form liquid crystals under certain conditions; (c) direct spinning, which can produce CNT fibers or yarns at the same time as synthesis by introducing a carbon source into a vertical furnace; and (d) forest spinning, which draws and twists CNTs grown vertically on a substrate. However, it is difficult for those CNT fibers to express the excellent properties of individual CNTs as they are. As solutions to this problem, post-treatment processes are under development for improving the production process of CNT fibers or enhancing their properties. This paper discusses the recent methods of fabricating CNT fibers and examines some post-treatment processes for property enhancement and their applications.