검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 146

        102.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 장수명 아스팔트 포장 공법개발 연구의 일환으로 포장수명을 40년이상 지속시킬 수 있는 단면설계를 수행하였다. 본 연구의 목적은 포장체의 장수명화를 위하여 효과적이고 간편하게 포장체의 각층 단면두께 및 탄성계수를 결정하는 절차를 제시함에 있다. 포장체의 유한요소 해석을 통하여 장수명 아스팔트포장의 가상데이터베이스를 구축하였다. 이 가상데이터베이스는 포장체 각 층의 두께, 탄성계수 및 포장체 내의 처짐, 응력 및 변형률을 포함하고있다. 구축된 데이터베이스를 이용하여 포장의 장수명에 필요한 한계변형률을 만족하는 포장의 단면을 제시하였다. 연구결과, 총 아스팔트층의 두께가 410mm보다 큰 경우에는 포장층의 각층의 두께나 재료의 특성과 관계없이 항상 장수명 아스팔트 포장으로 간주할 수 있으나, 250mm보다 작을 경우에는 장수명 아스팔트 포장에서 제외되었다. 총 아스팔트층의 두께가 250mm보다 크고 410mm보다 작은 경우에는 장수명 아스팔트 포장 조건에 만족하기 위한 포장층 두께와 탄성계수값을 결정할 수 있는 절차를 제시하였다.
        4,000원
        108.
        2004.03 구독 인증기관 무료, 개인회원 유료
        4,000원
        109.
        2004.03 구독 인증기관 무료, 개인회원 유료
        4,000원
        110.
        2003.12 구독 인증기관 무료, 개인회원 유료
        포장구조체에서 요구되는 강도를 갖게 하는 구조 설계의 방법은 경험적 절차부터 반역학적 절차까지 발전되어 왔다. 재생 가열아스팔트혼합물이 기존의 가열아스팔트혼합물(HMA)과 비교하여 비슷하거나 때에 따라 더 좋은 성능을 가져오므로, AASHTO설계지침서에서는 본질적으로 재생(recycled) HMA 재료와 신생(virgin) HMA 재료간의 차이가 없다고 기술하고 있으며, 기존 HMA 재료에 사용되는 덧씌우기설계법의 구조회복 분석방법(structural rehabilitation analysis method)을 재생포장설계에도 권장하고 있다. 재생 가열아스팔트의 설계를 위한 AASHTO 방법은 설계교통량, 교통량 및 수행능력예측의 신뢰수준, 공용기간, 그리고 포장상태 평가지수에 의하여 결정된 포장구조체에서 요구되는 포장두께지수(SN)에 기초한다. 포장두께지수(SN)는 포장층 두께, 상대강도계수, 각 층의 배수조건들의 곱의 조합으로서 나타내어질 수 있다. 덧씌우기로 간주될 수 있는 재생된 층의 포장두께지수(SN)는 기존 포장에서의 포장두께지수와 보강된 포장에서 요구되는 포장두께지수의 차이에 의하여 계산되어질 수 있다. 상대강도계수의 값은 AASHTO 설계지침에 명시되어 있다. AI 방법은 교통량, 노상의 회복탄성계수, 그리고 설계두께를 계산하기 위한 표층과 기층의 종류를 사용한다. 이 방법은 재생된 가열혼합물질과 기존의 가열혼합물질과는 거의 비슷한 성능을 나타낸다고 본다. 또다른 AI 방법에 의하면 재생된 층은 덧씌우기층이라고 간주하고, 현재의 포장두께와 요구되어지는 포장두께 사이의 차를 이용하여 재생될 층의 두께를 산정한다. 소요되는 덧씌우기 두께는 포장의 현장 상태지수(condition rating)와 각 종류에 따른 포장체와 포장재료가 아스팔트 콘크리트층의 등가두께로 전환되어 나타나는 방법에 근거하여 결정될 수 있다. 또 다른 방법은 포장체 각 층의 물성과 하중을 이용한 컴퓨터 프로그램에 의하여 산정된 하중-변형 응답에 의한 설계 방법을 포함한다. 이런 방법들에서는 포장체는 탄성이나 점탄성층 위에서 탄성이나 점탄성 거동을 보인다고 가정한다. 재생 상온혼합물에서의 AASHTO 설계 방법은 가열혼합물의 설계방법과 유사하다. 그러나, 재생 상온혼합물에서의 상대강도계수는 시공방법에 좌우되므로, 기술자의 판단을 근거로 하여 결정되어져야 한다. AI방법에서는 포장구조체를 다층탄성구조라고 보고, 노상의 강도와 설계 교통량을 근거로 요구되는 포장두께를 결정한다. 재생 상온혼합물 기층의 두께는 재생 상온혼합물 기충 위에서 가열아스팔혼합물에 대하여 산정된 덧씌우기 두께를 이용하여 결정할 수 있다. 아스팔트 표면의 재생은 기존 포장의 구조적 능력을 정상적으로 개선할 수 없으므로, 표면 재생의 두께를 설계하는 방법은 없다. 그러나, 임의의 덧씌우기 두께는 기존의 덧씌우기 설계법에 기초하여 산정 할 수 있다. 만약 덧씌우기가 승차감만을 개선시킨다고 여겨진다면, 혼합물에서 사용되어지는 최대 골재 크기에 기초한 최소 두께를 결정할 수 있다.
        4,200원
        111.
        2003.06 구독 인증기관 무료, 개인회원 유료
        4,000원
        112.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        도로포장 설계의 목적은 다른 토목구조물의 설계와 마찬가지로 정해진 신뢰성 수준에서 가장 경제적인 설계를 얻는데 있다 할 것이다. 미국과 유럽의 선진국가들의 설계법들은 전혀 상이한 신뢰성 수준을 갖는 설계결과들을 생산하는 설계법을 지양해가면서 세월을 두고 변천하여 균등한 신뢰성 수준을 보장할 수 있는 LRFD양식을 채용하는 방향으로 발전되었다. 현재, LRFD 양식은 콘크리트 구조, 목구조, 강구조 및 교량설계기준에 적용되어 있다 본 논문에서 저자는 역학-경험적 포장설계법에 적용될 신뢰성 모듈의 한 대안으로 신뢰성이론을 사용하여 LRFD 양식을 개발하고자 하는 과정을 예시하였다. AASHTO 86설계법에 따라 동일한 신뢰성 수준을 갖도록 설계된 10개의 포장단면이 피로균열과 같은 역학적 포장손상 측면에서 볼 때 균등한 구조적 신뢰성을 보여주지 못하며 LRFD 양식을 사용함으로서 그러한 균등한 신뢰성을 확보할 수 있다는 사실이 본 논문을 통해 예시되고 있다.
        4,000원
        113.
        2003.03 구독 인증기관 무료, 개인회원 유료
        도로포장 설계의 목적은 다른 토목구조물의 설계와 마찬가지로 정해진 신뢰성 수준에서 가장 경제적인 설계를 얻는데 있다 할 것이다. 미국과 유럽의 선진국가들의 설계법들은 전혀 상이한 신뢰성 수준을 갖는 설계결과들을 생산하는 설계법을 지양해가면서 세월을 두고 변천하여 균등한 신뢰성 수준을 보장할 수 있는 LRFD양식을 채용하는 방향으로 발전되었다. 현재, LRFD 양식은 콘크리트 구조, 목구조, 강구조 및 교량설계기준에 적용되어 있다 본 논문에서 저자는 역학-경험적 포장설계법에 적용될 신뢰성 모듈의 한 대안으로 신뢰성이론을 사용하여 LRFD 양식을 개발하고자 하는 과정을 예시하였다. AASHTO 86설계법에 따라 동일한 신뢰성 수준을 갖도록 설계된 10개의 포장단면이 피로균열과 같은 역학적 포장손상 측면에서 볼 때 균등한 구조적 신뢰성을 보여주지 못하며 LRFD 양식을 사용함으로서 그러한 균등한 신뢰성을 확보할 수 있다는 사실이 본 논문을 통해 예시되고 있다.
        4,000원
        118.
        2002.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현재 도로 설계는 기존의 경험적인 설계법에서 역학적인 설계법으로 바뀌고 있는 추세이다. 이러한 전환기에서 세계 많은 도로국들은 역학적-경험적인 도로 설계법을 개발하고 있고 혹은 이미 채택하여 적용하고 있다. 이에 실제 미국 미시간 도로국에서 나온 자료를 바탕으로 역학적-경험적 설계법을 개발하였다. 이 역학적-경험적 설계법의 연결 함수 (transfer function)로 사용될 소성 변형 예측 모델과 피로 균열 예측 모델도 함께 개발되었다. 여기서는 이 설계법을 개발하는데 사용된 자료와 예측 모델, 설계 알고리듬등이 소개된다. 이 설계법의 검증을 위해 기존의 경험적 설계법에 의한 설계와 새로 제시된 설계법에 의한 설계가 비교된다. 새로 설계된 설계법은 설계자 혹은 사용자가 도로 파손의 기준을 정량적으로 정함으로서 좀더 구체적으로 설계를 할 수가 있다.
        4,500원
        119.
        2002.09 구독 인증기관 무료, 개인회원 유료
        현재 도로 설계는 기존의 경험적인 설계법에서 역학적인 설계법으로 바뀌고 있는 추세이다. 이러한 전환기에서 세계 많은 도로국들은 역학적-경험적인 도로 설계법을 개발하고 있고 혹은 이미 채택하여 적용하고 있다. 이에 실제 미국 미시간 도로국에서 나온 자료를 바탕으로 역학적-경험적 설계법을 개발하였다. 이 역학적-경험적 설계법의 연결 함수 (transfer function)로 사용될 소성 변형 예측 모델과 피로 균열 예측 모델도 함께 개발되었다. 여기서는 이 설계법을 개발하는데 사용된 자료와 예측 모델, 설계 알고리듬등이 소개된다. 이 설계법의 검증을 위해 기존의 경험적 설계법에 의한 설계와 새로 제시된 설계법에 의한 설계가 비교된다. 새로 설계된 설계법은 설계자 혹은 사용자가 도로 파손의 기준을 정량적으로 정함으로서 좀더 구체적으로 설계를 할 수가 있다.
        4,500원
        120.
        2002.03 구독 인증기관 무료, 개인회원 유료
        4,000원
        6 7 8