수처리 및 의약바이오 분야에서 유효물질 분리에 활용되고 있는 알루미나 중공사 분리막은 얇은 두께로 인해 취 급 및 적용시 쉽게 파괴되는 단점이 있기 때문에 분리막의 강도를 100 MPa 이상으로 향상시키기 위한 연구가 필요하다. 본 연구에서는 나노입자의 함량을 0, 1, 3, 5 wt%로 증가시켰을 때 제조된 중공사 분리막의 특성을 평가하였다. 그 결과, 나노입 자의 함량이 증가함에 따라 중공사 분리막의 강도는 79 MPa에서 115 MPa로 증가하였으며, 밀도는 1.76 g/m3에서 1.88 g/m3 으로 증가하였고 기공률과 평균기공크기는 각각 51%에서 48%로, 416 nm에서 352 nm로 감소한 것을 확인하였다. 스폰지구 조가 발달하고 스폰지구조의 기공크기가 향상된 알루미나 중공사 분리막은 100 MPa 이상으로 기계적 강도가 향상되었으며, 약 100000 GPU의 높은 질소 투과도 및 약 3000 L/m2h의 높은 물 투과도를 나타내었다. 따라서, γ-알루미나 나노입자를 소 결조제로 첨가하는 것은 α-알루미나 중공사 분리막의 기계적 강도를 효과적으로 증진시키고 높은 투과성능을 유지할 수 있 는 매우 유효한 방법임을 확인하였다.
연구에서는 펄프공정으로부터 배출되는 리그닌 추출물 내의 금속이온분리를 위한 연구를 진행하였다. α- Alumina 분말에 DMAc (N,N-dimethylacetamide) 용매와 PESf (Polyethersulfone) 고분자를 혼합하고 PVP (Polyvinylpyrrolidone) 분산제를 첨가하여 슬립 캐스팅 방법으로 분리막을 제조하였다. 분리막은 CFP (Capillary Flow Porometer) 장치 를 통해 기공크기를 측정하고 FE-SEM (Field Emission Scanning Electron Microscope) 장치를 이용하여 실제 분리막 표면과 단면을 관찰하였다. 플럭스는 분리 실험장치를 이용하여 시간당 여과된 무게를 측정하여 계산하였다. 기공크기측정은 0 psi에 서 30 psi까지 서서히 증가하는 승압조건에서 진행하였다. 분리막의 기공크기는 0.4 μm 크기를 가지며 플럭스는 분리막의 파 울링에 의해 초기 플럭스 값인 6.36 kg⋅m-2⋅h-1에서 1.98 kg⋅m-2⋅h-1으로 감소하여 3시간 이후부터 일정해지는 것을 확인 하였다. 투과 실험 후 막 오염물질은 간단한 세척을 통해 제거 가능하였다. 분리실험을 통해 초기 리그닌 추출물 내에 포함되 어 있던 Na은 69%만큼 줄었고, Fe은 87%, K은 95%, Ca은 93%, Mg은 96%만큼 제거됨을 보였다
알루미나 분말이 분산된 고분자용액을 비용매 유도 상전이법으로 방사 및 소결하여 알루미나 중공사막을 제조하 였다. 용매-비용매의 상호작용 속도에 따른 중공사막 기공 구조 형성을 확인하고, 특성을 분석하기 위해 dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), triethylphosphite (TEP) 용매를 사용하여 방사액을 제조하였으며, 고분자 바인더로는 polyethersulfone (PESf), 첨가제로는 polyvinylpyrrolidone (PVP)를 사용하였다. 알루미나 중공사막의 기공 구조 변화를 확인 하기 위해 SEM으로 중공사막 단면을 분석하였다. DMSO, DMAc 용매를 사용할 경우 지상 구조(finger-like structure)와 망상 구조(sponge-like structure)가 복합된 기공 구조가 나타났으며, TEP 용매를 사용할 경우 전체적으로 망상 구조를 가졌다. 기공 구조에 따른 중공사막의 특성을 확인하기 위해 기체투과도, 기공도 및 기계적 강도를 측정하였다. 망상 구조를 갖는 중공사막 은 높은 기체 투과특성을 보였으며 지상 구조가 증가할수록 기체투과도가 감소하였다. 반대로 기계적 강도는 지상 구조가 발 달할수록 증가하였다.
A porous α-alumina tube of 2.5 ㎜ O.D. and 1.9 ㎜ I.D. was used as the support of an inorganic membrane. Macropores of the tube, about 150 nm in size, were plugged with silica formed by thermal decomposition of tetraethylorthosillcate at 600℃. The forced cross-flow CVD method that reactant was evacuated through the porous wall of the support was very effective in plugging macropores. The H_2 permeance of the prepared membrane was of the order of 10^-8 mol s^-1 m^-2 . Pa^-1, while the N_2 permeance was below 10^-11 mol. s^-1 . m^-2 . Pa^-1 at 600℃. This was comparable to that of silica-modified Vycor glass whose size was 4 nm.