이 실험에서는 α-Al2O3 지지체 위에 진공 코팅(vacuum coating)과 딥 코팅(dip-coating) 기법을 사용하여 GO/γ -Al2O3 중간층을 형성하였고, 무전해도금 방식을 통해 Pd-Ag 수소 분리막을 제작하였다. Pd와 Ag는 각각 무전해도금을 통해 지지체 표면에 증착되었으며, 합금화를 위해 도금 과정 중 H2 분위기 하에서 500°C에서 18 h 동안 열처리를 진행하였다. 제 조된 분리막의 표면과 단면은 SEM을 통해 분석되었으며, Pd-Ag 분리막의 두께는 1.88 μm, GO/γ-Al2O3 중간층을 가진 Pd-Ag 분리막의 두께는 1.07 μm로 측정되었다. EDS 분석을 통해 Pd-77%, Ag-23%의 조성으로 합금이 형성된 것을 확인하 였다. 기체투과 실험은 H2 단일가스와 H2/N2 혼합가스를 이용하여 수행되었다. H2 단일가스 투과실험에서 450°C, 4 bar 조건 하에서 Pd 분리막의 최대 H2 플럭스는 0.53 mol/m²·s로, Pd-Ag 분리막의 경우 0.76 mol/m²·s로 측정되었다. H2/N2 혼합가스 실험에서 측정된 분리막의 separation factor는 450°C, 4 bar 조건에서 Pd 분리막이 2626, Pd-Ag 분리막이 13808로 나타났다.
A promising candidate material for a H2 permeable membrane is SiC due to its many unique properties. Ahydrogen-selective SiC membrane was successfully fabricated on the outer surface of an intermediate multilayer γ-Al2O3 witha graded structure. The γ-Al2O3 multilayer was formed on top of a macroporous α-Al2O3 support by consecutively dipping intoa set of successive solutions containing boehmite sols of different particle sizes and then calcining. The boehmite sols wereprepared from an aluminum isopropoxide precursor and heated to 80oC with high speed stirring for 24 hrs to hydrolyze theprecursor. Then the solutions were refluxed at 92oC for 20 hrs to form a boehmite precipitate. The particle size of the boehmitesols was controlled according to various experimental parameters, such as acid types and acid concentrations. The topmost SiClayer was formed on top of the intermediate γ-Al2O3 by pyrolysis of a SiC precursor, polycarbosilane, in an Ar atmosphere. Theresulting amorphous SiC-on-Al2O3 composite membrane pyrolyzed at 900oC possessed a high H2 permeability of 3.61×10−7mol·m−2·s−1·Pa−1 and the H2/CO2 selectivity was much higher than the theoretical value of 4.69 in all permeation temperatureranges. Gas permeabilities through a SiC membrane are affected by Knudsen diffusion and a surface diffusion mechanism,which are based on the molecular weight of gas species and movement of adsorbed gas molecules on the surface of the pores.
국내산 kaolinite를 소성한 다음 실리카를 선택적으로 추출하여 중기공성 γ-Al2O3를 제조하였다. 1000˚C에서 24시간 소성된 kaolinite는 소량의 무정형 실리카와 γ-Al2O3으로 이루어진 스피넬 상의 미세구조로 전이되었음을 확인하였다. 다공성 γ-Al2O3는 25~90˚C의 반응온도, 0.5~4h의 추출시간 및 1~8M의 KOH 농도범위에서 무정형 실리카를 선택적으로 용해하여 제조할 수 있었다. 90˚C, 1시간 및 4M의 KOH 농도조건에서 얻어진 γ-Al2O3는 약 40~80Å 정도의 매우 좁은 하나의 기공크기 분포를 가지고 있었으며, mesopore의 기공이 많이 생성되었다. 비표면적은 250m2/g이고, 총 기공부피는 0.654cm3/g로 나타났다.
본 연구에서는 폐자원 합성가스를 이용한 고온전이반응용 Ce가 첨가된 Cu/γ-Al2O3 촉매의 물리 화학적 특성을 비교 분석하였다. 합성방법에 따른 촉매의 특성을 비교하기 위해 활성물질의 담지 순서를 변경하여 Ce/Cu/γ-Al2O3, Ce-Cu/γ-Al2O3, Cu/Ce/γ-Al2O3, Cu/γ-Al2O3 촉매를 제조하였다. 제조된 촉매 중 Ce/Cu/γ-Al2O3 촉매가 가장 높은 활성도 및 안전성을 나타냈다. 제조된 촉매의 물리-화학적 특성은 XRD, H2-TPR, XPS, Raman, Photoluminescence 등으로 분석하였다. 그리고 CO 전환율에서도 CeO2로 첨가된 모든 Cu/γ-Al2O3 촉매는 Cu/γ-Al2O3보다 높은 CO 전환율을 보였다. 이 연구결과는 CeO2의 첨가가 고온전이반응에서 Cu/γ-Al2O3 촉매의 성능을 향상 시킨 것을 나타낸다. 또한, Ce/Cu/γ-Al2O3 촉매의 높은 촉매 활성은 주로 고농도 산소저장능 및 환원된 Cu종과 관련이 있음을 알 수 있었다.
The purpose of this study was to investigate the effect of the preparation method on CeO2-promoted Cu/γ -Al2O3 catalysts for the high temperature shift reaction using simulated waste-derived syngas (H2 + CO). To investigate the effect of preparation method on the CeO2-promoted Cu/γ-Al2O3 catalyst, we compared catalytic performance over Ce/Cu/γ-Al2O3, Ce-Cu/γ-Al2O3, Cu/Ce/γ-Al2O3, and Cu/γ-Al2O3 catalysts, and tried to explain the differences in catalytic performance with various characterization methods. The physico-chemical properties of the CeO2-promoted catalysts were characterized using surface spectroscopies such as BET, XRD, TPR, XPS, Raman spectroscopy, photoluminescence spectroscopy, and N2O-chemisorption. The catalyst characterizations were correlated with activity results in the high temperature shift reaction.
Most of the commercial SCR technology is very efficient in the temperature range of 250∼350℃. However, the flue gas temperature after waste heat recovery system or wet desulfurization system is in general under 200℃. The performance of SCR system is very poor and there are slip ammonia problem at low temperature. Low temperature SCR technology is necessary to save the flue gas reheating energy and reduce the greenhouse gas emission. The SCR catalyst operating at low temperature has been developed for the new waste flue gas heat recovery system of the existing incinerator. The flue gas temperature is under 170℃ after the flue gas heat recovery. The SCR catalyst is made by key component Mn impregnated on γ-Al2O3 of which the diameter is 1.7mm~2.8mm. The dimension of cylindrical SCR reactor is inside diameter 22.1mm and height 350mm. The effects of reducing agent injection rates, space velocity at different reaction temperature were studied on the De-NOx performance and slip ammonia to get a design data. It was found that the Mn based SCR catalyst is effective in low temperature flue gas without ammonia slip. The outlet concentration of NOx in the flue gas decreased to 12ppm from inlet 150ppm at space velocity 10,000 hr-, NH3/NO = 1 and reaction temperature 170℃. The De-NOx efficiency is 92% at reaction temperature 170℃ which is much higher than 82% at 150℃. At the SCR reaction temperature 170℃, the NOx removal efficiency was 78~99% in the space velocity range 5,000~12,500hr-, and 79~92% at NH3/NO ratio range 0.5~1.0.
Alumina-supported catalysts containing different transition metals such as Cu, Cr, Mn, Zn, Co, W were investigated for their activity in the selective oxidation of toluene. Catalytic oxidation of toluene was investigated at atmospheric pressure in a fixed bed flow reactor system over transition metals with Al2O3 catalyst. The result showed the order of catalytic activities for the complete oxidation of toluene was Mn > Cu> Cr> Co> W> Zn for 5wt.% transition metals/Al2O3. Mn/Al2O3 catalysts containing different amount of Mn were characterized by X-ray diffraction spectroscopy for decision of loading amount of metal to alumina. 5 wt.%Mn/Al2O3 catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289℃.