Sentiment analysis is a method used to comprehend feelings, opinions, and attitudes in text, and it is essential for evaluating consumer feedback and social media posts. However, creating sentiment dictionaries, which are necessary for this analysis, is complex and time-consuming because people express their emotions differently depending on the context and domain. In this study, we propose a new method for simplifying this procedure. We utilize syntax analysis of the Korean language to identify and extract sentiment words based on the Reason-Sentiment Pattern, which distinguishes between words expressing feelings and words explaining why those feelings are expressed, making it applicable in various contexts and domains. We also define sentiment words as those with clear polarity, even when used independently and exclude words whose polarity varies with context and domain. This approach enables the extraction of explicit sentiment expressions, enhancing the accuracy of sentiment analysis at the attribute level. Our methodology, validated using Korean cosmetics review datasets from Korean online shopping malls, demonstrates how a sentiment dictionary focused solely on clear polarity words can provide valuable insights for product planners. Understanding the polarity and reasons behind specific attributes enables improvement of product weaknesses and emphasis on strengths. This approach not only reduces dependency on extensive sentiment dictionaries but also offers high accuracy and applicability across various domains.
Recently, many studies are being conducted to extract emotion from text and verify its information power in the field of finance, along with the recent development of big data analysis technology. A number of prior studies use pre-defined sentiment dictionaries or machine learning methods to extract sentiment from the financial documents. However, both methods have the disadvantage of being labor-intensive and subjective because it requires a manual sentiment learning process. In this study, we developed a financial sentiment dictionary that automatically extracts sentiment from the body text of analyst reports by using modified Bayes rule and verified the performance of the model through a binary classification model which predicts actual stock price movements. As a result of the prediction, it was found that the proposed financial dictionary from this research has about 4% better predictive power for actual stock price movements than the representative Loughran and McDonald’s (2011) financial dictionary. The sentiment extraction method proposed in this study enables efficient and objective judgment because it automatically learns the sentiment of words using both the change in target price and the cumulative abnormal returns. In addition, the dictionary can be easily updated by re-calculating conditional probabilities. The results of this study are expected to be readily expandable and applicable not only to analyst reports, but also to financial field texts such as performance reports, IR reports, press articles, and social media.
감성어휘는 텍스트로 감성을 표현하거나, 반대로 텍스트로부터 감성을 인식하기 위한 특징으로써 감성분류 연 구에 필수요소이다. 본 연구는 감성어휘의 집합인 감성사전을 자동으로 구축하는 그래프 기반 준지도 학습 방법 을 제안한다. 특히 감성어휘가 사용되어지는 분야에 따라 그 감성이 변하는 중의성 문제를 고려하여 분야 별 감 성사전을 구축하고자 한다. 제안하는 방법은 어휘와 어휘들 간의 밀접도를 토대로 그래프를 구성하고, 사전에 학 습 된 일부 소량의 감성어휘들의 감성을 구성된 그래프 전체에 전파하는 방식으로 모든 어휘의 감성을 추론한다. 감성어휘는 대표적으로 감성단어와 감성구문이 있으며, 본 연구에서는 이들 각각에 대한 그래프를 구성하고 감성을 추론하여 전체 감성사전을 구축하였다. 제안하는 방법의 성능을 검증하기 위해 영화평 분야의 감성사전을 구축하고, 이를 이용한 영화평 감성분류 실험을 수행하였다. 그 결과 기존 범용 감성사전의 어휘들을 이용한 감 성분류보다 더 높은 분류 성능을 확인하였다.
본 논문은 게임 도메인에서 웹 코퍼스를 이용하여 감성사전을 구축하는 방법과 구축한 감성사전의 평가 결과를 기술한다. 감성사전 구축을 위해 먼저 트위터 형태소 분석기를 이용해 국내 한 포털 사이트의 게임 관련 웹 문서를 기반으로 어휘를 수집하여 감성 사전 어휘 목록을 만들었고, 목록에 있는 단어들 중 동사와 형용사 품사의 단어들에 대해 감성 사전을 구축하였다. 구축된 감성 사전의 평가를 위해 영어 기반의 Senti-word Net(SWN)을 한글로 번역한 한국어 SWN을 이용하여 정밀도와 재현율 값을 계산하였다. 평가 결과 긍정과 부정 감성의 F-1값에 대한 평균이 형용사의 경우 0.85, 동사에 대해 0.77을 각각 보여 주었다.
감성 분석은 글을 통해 작성자의 주관적인 생각이나 느낌을 분석하는 방법으로 효과적인 감성 분석을 위해서는 감성 단어 극성 사전 구축이 필수적이다. 본 논문은 효율적인 한국어 극성 사전 구축을 위해 우리가 개발한 크라우드소싱 기반 게임을 소개한다. 먼저, 크롤러를 이용해 인터넷 커 뮤니티에서 말뭉치들을 수집했고, Twitter 형태소를 이용해 수집한 말뭉치를 형태소별로 분류하고 단어화했다. 이 단어들은 모바일 플랫폼 기반 태깅 게임 형태로 제공되어 게임플레이를 통해 플레 이어들이 자발적으로 단어들의 극성을 선택하고 결과가 데이터 베이스에 축적되도록 게임이 설계 되었다. 현재까지 약 1200여개의 단어들의 극성을 태깅하였으며, 향후 좀 더 많은 감성 단어 데이 터들을 축적함으로써 특히 게임 도메인에서 한국어 감성 분석 연구에 기여할 것으로 기대한다.