To evaluate parameters influencing on the dust removal of the High Temperature Filter(HTF) system, a computer simulation of fluid dynamics inside the system had been performed. The results showed that the optimum pulse jet periods were 50ms and 90ms for the 1000mm and 1500mm long filter elements respectively. Dust removal effect was very excellent under the pulse jet pressure of 3 bar. But the distance between the pulse jet nozzle and the venturi of a filter element had no meaningful effect on the performance with the variation from 5mm to 10mm. Compared to the dispersion mode of pulse jet, the collective mode of pulse jet flow was preferable in maintaining the pressure inside the system stable.
This work presents an experimental study of the influence of lifting velocity on cake formation during filtration. For design of hot gas cleanup system using ceramic filter reactor, the most important consideration is coating conditions of sorbent in filter surface (for example : lifting velocity, coating weight of sorbent, pulsing interval and removal effect for dechlorination and desulfurization). We studied the optimum operation condition as paticle size and lifting velocity using a ceramic filter reactor at 550oC. Based on the results obtained during cold and hot test, optimum lifting velocity in a ceramic filter reactor was selected 0.68 m/s. Also, the removal behaviour of the ceramic filter during filtration was studied using differential pressure. Optimum removal efficiency for dechlorination and desulfurization accomplished at differential pressure condition over 74 mmH2O.