검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 43

        1.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A cold-work tool steel powder is used to fabricate 3-dimensional objects by selective laser melting using a high-pressure gas atomization process. The spherical powder particles form continuous carbide networks among the austenite matrix and its decomposition products. The carbides comprise Nb-rich MC and Mo-rich M2C. In the SLM process, the process parameters such as the laser power (90 W), layer thickness (25 μm), and hatch spacing (80 μm) are kept fixed, while the scan speed is changed from 50 mm/s to 4000 mm/s. At a low scan speed of 50 mm/s, spherical cavities develop due to over melting, while they are substantially reduced on increasing the speed to 2000 mm/s. The carbide network spacing decreases with increasing speed. At an excessively high speed of 4000 mm/s, long and irregularly shaped cavities are developed due to incomplete melting. The influence of the scan pattern is examined, for which 1 × 1 mm2 blocks constituting a processing layer are irradiated in a random sequence. This island-type pattern exhibits the same effect as that of a low scan speed. Post processing of an object using hot isostatic pressing leads to a great reduction in the porosity but causes coarsening of the microstructure.
        4,000원
        2.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to growth of electronics and control devices, automation and situational awareness systems have been applied by automobile. Vision systems with the introduction of unmanned system were being actively developed. In this paper, the distortion in the 7-inch LCD screen for the treatment process are divided into Online and Offline processing. Offline processing based on the image signal processing and for generating LUT Online to Offline generated by processing the distortion is applied to the LUT. LUT is applied to distort the image processing in real time, so that distortion correction is made for the purpose of setting.
        4,000원
        3.
        1999.12 구독 인증기관 무료, 개인회원 유료
        5,500원
        4.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        This study deals with inorganic Carbon dioxide Capture Utilization (CCU) by using seawater-based industrial wastewater. Industrial wastewater, which contains plenty of cations such as Ca2+ and Mg2+, is considered as a cation source for mineral carbonation. Modeled industrial wastewater was used to study the tendency of mineral carbonation on various condition. Cation concentration of industrial wastewater was modified at various levels and then reacted with fully CO2- absorbed 30wt.% monoethanolamine (MEA) solution. A metal carbonate precipitated as a result of the reaction, and the same experiment was performed with 1/3, 2/3 CO2-absorbed MEA solution to study the tendency of carbonation under different CO3 2− conditions. The amount of precipitate was increased proportionally to the cation concentration and the amount of absorbed CO2. Most of the precipitate was calcium carbonate (CaCO3), although other metal carbonates were also formed. Most of the CaCO3 was found in calcite form, but vaterite and aragonite were also formed under specific conditions. Based on the experimental results, we conclude that by controlling the concentration of cations and CO3 2−, we were able to optimize mineral carbonation conditions. We also noticed that low CO3 2− concentration in MEA solutions is advantageous for producing high quality calcium carbonate crystals. Inductively Coupled Plasma (ICP), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) analyses were performed to analyze the precipitate.
        5.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        Municipal solid waste incinerator (MSWI) fly ash was used for accelerated carbonation via bubbling of gaseous carbon dioxide (CO2) after treatment with sodium hydroxide (NaOH). The influence of alkaline concentration and volumetric flowrate of CO2 was investigated. Experimental results showed that carbonation reduced the leaching of Cu, Pb, Zn, and Cr. The pH of leachate decreased from around 12 to 10.5. The content of soluble chlorides was also decreased after carbonation. Additionally, the application of accelerated carbonation enhanced the sequestration of CO2 from MSW incineration plants. The TG/DSC analysis indicated that MSWI fly ash sequestrated approximately 185 g CO2/kg waste.
        6.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        Mineral carbonation is one of the safest permanent carbon dioxide sequestration methods. Carbon Capture & Utilization (CCU) is a process that utilizes available resources by removing carbon dioxide in a method of mineral carbonation. It can be applied to industries producing high carbon dioxide emissions. This study aims to investigate the absorption performance of carbon dioxide at high concentrations. Calcium hydroxide suspension was used as an absorbent. In addition, NaOH and Mg(OH)2 were used as additives. Carbon dioxide removal efficiency with NaOH increased from 30% to 90% when the additive amount was increased from 1wt% to 3wt%. In the case of Mg(OH)2, carbon dioxide absorption efficiency was minimal regardless of the additive amount. In addition, the solid byproducts werec onfirmed by X-ray diffraction spectra and SEM images.
        7.
        2014.11 서비스 종료(열람 제한)
        석탄을 이용한 대규모 가스화 설비들은 전력생산과 연료합성에 있어서 실제 상업적으로 많이 적용되어 이용되고 있다. 그러나, 상대적으로 수급과 가격에 있어 장점이 있는 폐기물을 원료로 이용한 가스화기술의 적용과 상용화기술의 개발은 석탄가스화기술과 비교하여 적용실적 및 분야가 다소 부족한 것이 사실이다. 이러한 필요성에 의해 폐기물을 원료로 이용한 가스화기술의 개발이 국내뿐 아니라 국외에서 많은 연구와 관심의 대상이 되고 있다. 폐기물 가스화시 폐기물을 구성하는 원료 물질들은 대부분 가스상 오염물질들로 전환된다. 이런 과정을 통해 가스화기에서 생산된 합성가스는 분진, H2S, COS, HCl, NH3, HCN, 중금속등의 다양한 오염물질들을 포함하고 있다. 폐기물을 원료로 하여 개발되고 있는 에너지생산 및 화학합성 공정들은 장치의 부식방지, 촉매피독, 오염물 농도 규제치를 만족시키기 위해 엄격한 정제수준이 요구된다. 이러한 정제수준의 달성을 위해 석탄과 폐기물을 원료로 한 가스화 공정에 대하여 고온조건에서 필터와 흡착제를 활용한 정제기술들이 개발되어왔다. 본 연구는 파일럿 규모의 실험설비를 이용하여 폐기물 합성가스 내에 존재하는 오염물질들의 처리, 제거 특성을 살펴보고 기초적인 운영특성을 알아보았다. 유량, 온도, 압력등의 다양한 공정조건에서 기초적인 기능을 수행하는 고온백필터 운영을 통한 집진성능을 알아보았다. 사업장폐기물과 폐자동차에서 발생하는 ASR을 대상으로 가스화 후 발생되는 분진에 대한 집진성능을 평가하였으며 1차백과 2차백으로 구성된 2개의 필터를 이용하여 총괄 집진이 이루어졌다. 1차백에서 평균 입구농도가 36,923 mg/m³, 출구농도가 4,351 mg/m³으로 나타났으며 평균 제거효율은 90.05%로 나타났다. 2차백의 평균 입구농도는 4,351 mg/m³, 출구농도가 7.2 mg/m³으로 나타났으며 2차백의 평균 제거효율은 99.83%로 나타났다. 1차/2차백을 모두 통과한 전체 가스의 총 제거효율은 99.98%로 입구평균농도가 36,923 mg/m³인 조건에서 출구농도가 7.2 mg/m³를 나타내었다.
        8.
        2013.04 KCI 등재 서비스 종료(열람 제한)
        This work presents an experimental study of the influence of lifting velocity on cake formation during filtration. For design of hot gas cleanup system using ceramic filter reactor, the most important consideration is coating conditions of sorbent in filter surface (for example : lifting velocity, coating weight of sorbent, pulsing interval and removal effect for dechlorination and desulfurization). We studied the optimum operation condition as paticle size and lifting velocity using a ceramic filter reactor at 550oC. Based on the results obtained during cold and hot test, optimum lifting velocity in a ceramic filter reactor was selected 0.68 m/s. Also, the removal behaviour of the ceramic filter during filtration was studied using differential pressure. Optimum removal efficiency for dechlorination and desulfurization accomplished at differential pressure condition over 74 mmH2O.
        9.
        2013.04 KCI 등재 서비스 종료(열람 제한)
        We investigated the effect of temperature and pressure in breakthrough performance of various sorbents for dechlorination and desulfurization. Based on the results obtained during the desulfurization (Fe2O3, Fe3O4, ZnO) and the dechlorination (Na2CO3, NaHCO3, trona) screening tests, ZnO and trona were selected as preferred optimum sorbents. H2S breakthrough time corresponds to an effective capacity of approximately 11 g H2S/100 g of sorbent. Also, HCl breakthrough time corresponds to an effective capacity of approximately 5 g HCl/100 g of sorbent. ZnO and trona at high temperature of around 550oC display high sorption performance and removal efficiency for synthsis gas from waste gasification. Although there is an issue of CO2 recovery in hot gas cleanup technology for desulfurization, we have obtained an interesting new alternative hot gas cleanup system with heat budget merit.
        1 2 3