교면 슬래브에 균열의 발생 및 수분의 침투는 구조물 내부의 철근 및 철골을 부식시키며, 아스팔트 콘 크리트 층의 파손, 특히 동절기 노면 결빙 방지를 위해 살포된 염화칼슘의 염해 피해 등을 고려할 시 교면 방수는 필수적인 항목이다. 피해를 방지하고자 적용하는 공법 중 방수성·내유동성·내마모성이 우수한 구스아스팔트 포장을 시공하는 방법이 있다. 하지만 설비비용과 운반, 포설장비에 드는 비용이 비경제적인 단점이 있으며, 강상판 위에 시공하였을 시 고온의 열이 전달되어 구조물의 변형을 유발하고 시공 후에는 잔류 응력 및 잔류 변형의 형태로 남게 된다. 고온 시공은 변형에 대한 우려 뿐 아니라 계속해서 높은 온도를 유지해야하기 때문에 작업의 안정성이 떨어지고 있다. 플랜트에서 아스팔트를 제작 후 포설 시까 지 항시 고온을 유지 하여야 하기 때문에 안전을 요하며 작업으로 한순간의 사고로 이어질 수 있는 위험 작업군으로 분류되고 있다. 여기에 온실가스배출 이라는 추가적인 단점을 볼 수 있다. 고온에서의 아스팔트 생산 및 포장 과정에서 이를 위하여 혼합물의 가열을 위해 많은 양의 연료가 소모되고, 이산화탄소와 황산화물 등 유해가스가 많이 발생한다. 아직 해결되지 않은 문제점으로 인하여 국내에서는 방수층 용도로 기층 포장에만 적용하고 있는 실정이다.
본 연구는 기존 구스아스팔트의 포장 및 방수층의 물리적 기능을 살리면서 60℃~80℃의 중온시공이 가능한 포장 공법에 대한 내용이다. 기존의 구스아스팔트와 동일한 골재입도 및 아스팔트함량을 적용하되 중온에서 최적의 구스함량으로 골재를 코팅한 후 반응성 아스팔트를 사용하여 중온에서 시공이 가능토록 하였다. 고온시공을 중온시공이 가능하도록 함으로써 유지보수 및 시공성의 효율성을 높였으며 탄소저감 과 공사비의 절감에 유리한 공법으로 판단된다.
본 논문은 하중재하시 강상판교의 방수층과 교면포장에서 발생하는 거동을 유한요소해석을 통하여 분석하였다. 포장표면에 연직방향으로 작용하는 차량하중과 수평방향으로 작용하는 차량의 제동하중의 크기에 따른 포장체와 방수시트에 발생되는 응력을 산정하였다. 그리고 강상판 두께 및 강성. 포장층 두께, 차량제동하중, 온도 등의 변수가 포장체의 응력변화에 어떠한 영향을 미치는지에 대하여 분석하였다. 방수층의 전단응력은 강상판의 두께가 얇아지고 강성이 감소할수록 증가하였으며, 강상판의 두께가 150mm이상의 경우와 탄성계수가 2×105MPa이상의 경우에는 그 영향이 미비하였다 또한 교면 포장의 두께가 얇아지고 온도가 낮아질수록 방수층의 전단응력이 증가하였다. 포장체 하부에서 발생하는 인장변형률은 고온에서 최대가 되었으며 두께가 증가할수록 감소하였다.
방수시스템(WPS)의 성능은 재료 인자들의 복잡한 상호작용, 설계상세, 그리고 시공의 질에 따라 영향을 받고, 주로 인장접착강도(TAS)로 측정되는 교면과의 접착성에 의해 결정되는 것으로 알려져 있다. 따라서 본 연구는 현재 국내에 유통되고 있는 교면방수재 8종의 WPS의 성능을 아스팔트 포장층 혼합물의 종류, 시공시 혼합물의 온도, 포장층의 두께, 반복주행시험에 따른 접착특성을 중심으로 인장접착특성을 비교하였다. 또한 TAS 시험 후 계면에서의 탈리상태를 조사하였다. WPS에 대한 TAS 시험결과 SMA 혼합물이 밀입도 혼합물 보다 TAS가 크게 나타나 아스팔트 혼합물 종류에 따라서 차이가 났다. 시트식 방수재는 아스팔트 혼합물의 종류에 상관없이 시공온도가 높은 것이 접착력이 더 크게 나타났으나 도막식에서는 방수재 계열별로 다소 차이가 있고 시트식과 같지 않은 것으로 나타났다. 포장층 두께에 따른 영향은 방수재 종류에 상관없이 대동소이한 것으로 나타났다. 반복주행시험에 따라서 시트식에서의 접착력은 하중 재하지점>하중재하 않은 곳>하중 재하지점 옆 부근의 순서로 나타났고, 도막식에서는 방수재 종류에 따라 다르게 나타났다. 또한 방수재의 종류 및 특성에 따라 방수시스템 계면에서의 탈리상태가 다르다는 것을 알 수 있었다.
방수시스템(WPS)의 성능은 재료 인자들의 복잡한 상호작용, 설계상세, 그리고 시공의 질에 따라 영향을 받고, 주로 인장접착강도(TAS)로 측정되는 교면과의 접착성에 의해 결정되는 것으로 알려져 있다. 따라서 본 연구는 현재 국내에 유통되고 있는 교면방수재 8종의 WPS의 성능을 아스팔트 포장층 혼합물의 종류, 시공시 혼합물의 온도, 포장층의 두께, 반복주행시험에 따른 접착특성을 중심으로 인장접착특성을 비교하였다. 또한 TAS 시험 후 계면에서의 탈리상태를 조사하였다. WPS에 대한 TAS 시험결과 SMA 혼합물이 밀입도 혼합물 보다 TAS가 크게 나타나 아스팔트 혼합물 종류에 따라서 차이가 났다. 시트식 방수재는 아스팔트 혼합물의 종류에 상관없이 시공온도가 높은 것이 접착력이 더 크게 나타났으나 도막식에서는 방수재 계열별로 다소 차이가 있고 시트식과 같지 않은 것으로 나타났다. 포장층 두께에 따른 영향은 방수재 종류에 상관없이 대동소이한 것으로 나타났다. 반복주행시험에 따라서 시트식에서의 접착력은 하중 재하지점>하중재하 않은 곳>하중 재하지점 옆 부근의 순서로 나타났고, 도막식에서는 방수재 종류에 따라 다르게 나타났다. 또한 방수재의 종류 및 특성에 따라 방수시스템 계면에서의 탈리상태가 다르다는 것을 알 수 있었다.
방수시스템의 거동은 재료 인자들의 복잡한 상호작용, 설계 상세, 그리고 시공의 질에 따라 결정되고, 방수성은 교면과의 접착성과 방수재의 손상정도에 의해 결정되는 것으로 알려져 있다. 따라서 본 연구는 현재 국내에 유통되고 있는 교면방수재의 종류별로 방수시스템의 성능을 현재 각 시공현장에서 하자의 원인으로 가장 빈번하게 발생되는 요인들을 중심으로 인장접착 특성을 비교하였다. 방수시스템에 대한 인장접착강도 시험 결과, 함수비 10% 이상에서는 무기질탄성계 도막방수재를 제외하고는 접착력이 감소하였으며, 바닥판 콘크리트 강도가 증가할수록 일반적으로 인장접착강도는 증가하였다. 또한 바닥판 콘크리트의 양생방법에 따라 내부의 공극구조 및 평탄성의 차이로 인해 수중양생한 시편이 전반적으로 접착력이 더 큰 것으로 나타났다. 아스팔트 혼합물 포설전 보다 아스팔트 혼합물 포설후 인장접착강도가 증가하는 경향을 나타냈지만 도막식의 경우, 오히려 감소하는 결과가 나타났다. 그리고 방수재 시공시 대기온도가 상승함에 따라 접착력이 저하되어 방수 시스템의 성능에 악영향을 미치는 것으로 나타났다.
방수시스템의 거동은 재료 인자들의 복잡한 상호작용, 설계 상세, 그리고 시공의 질에 따라 결정되고, 방수성은 교면과의 접착성과 방수재의 손상정도에 의해 결정되는 것으로 알려져 있다. 따라서 본 연구는 현재 국내에 유통되고 있는 교면방수재의 종류별로 방수시스템의 성능을 현재 각 시공현장에서 하자의 원인으로 가장 빈번하게 발생되는 요인들을 중심으로 인장접착 특성을 비교하였다. 방수시스템에 대한 인장접착강도 시험 결과, 함수비 10% 이상에서는 무기질탄성계 도막방수재를 제외하고는 접착력이 감소하였으며, 바닥판 콘크리트 강도가 증가할수록 일반적으로 인장접착강도는 증가하였다. 또한 바닥판 콘크리트의 양생방법에 따라 내부의 공극구조 및 평탄성의 차이로 인해 수중양생한 시편이 전반적으로 접착력이 더 큰 것으로 나타났다. 아스팔트 혼합물 포설전 보다 아스팔트 혼합물 포설후 인장접착강도가 증가하는 경향을 나타냈지만 도막식의 경우, 오히려 감소하는 결과가 나타났다. 그리고 방수재 시공시 대기온도가 상승함에 따라 접착력이 저하되어 방수 시스템의 성능에 악영향을 미치는 것으로 나타났다.
Bridge Deck Waterproof has good constructability and economic efficiency, and it does not have any influence on following processes. But it is uncertain at concrete penetration performance. This paper were investigated pore characteristics in order to examine the performance of the domestic Bridge deck waterproof