검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        4.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 데이터를 기반으로 한 인공지능 기계학습 기법을 활용하여 온실 내부온도 예측 시뮬레이션 모델을 개발을 수행 하였다. 온실 시스템의 내부온도 예측을 위해서 다양한 방법 이 연구됐지만, 가외 변인으로 인하여 기존 시뮬레이션 분석 방법은 낮은 정밀도의 문제점을 지니고 있다. 이러한 한계점 을 극복하기 위하여 최근 개발되고 있는 데이터 기반의 기계 학습을 활용하여 온실 내부온도 예측 모델 개발을 수행하였 다. 기계학습모델은 데이터 수집, 특성 분석, 학습을 통하여 개 발되며 매개변수와 학습방법에 따라 모델의 정확도가 크게 변 화된다. 따라서 데이터 특성에 따른 최적의 모델 도출방법이 필요하다. 모델 개발 결과 숨은층 증가에 따라 모델 정확도가 상승하였으며 최종적으로 GRU 알고리즘과 숨은층 6에서 r2 0.9848과 RMSE 0.5857℃로 최적 모델이 도출되었다. 본 연 구를 통하여 온실 외부 데이터를 활용하여 온실 내부온도 예 측 모델 개발이 가능함을 검증하였으며, 추후 다양한 온실데이 터에 적용 및 비교분석이 수행되어야 한다. 이후 한 단계 더 나아 가 기계학습모델 예측(predicted) 결과를 예보(forecasting)단 계로 개선하기 위해서 데이터 시간 길이(sequence length)에 따른 특성 분석 및 계절별 기후변화와 작물에 따른 사례별로 개발 모델을 관리하는 등의 다양한 추가 연구가 수행되어야 한다.
        4,200원
        7.
        2016.05 구독 인증기관·개인회원 무료
        역삼투 해수담수화 공정에서 막 오염은 생산수량 감소 및 공정의 에너지 소비량 증가를 야기한다. 막간 차압 증가, 생산수량 감소 외에 막 저항 값의 증가는 막 오염 정도를 판단하는 수치로 사용이 가능하다. 특히 막 저항 값 기반의 세정은 막 오염 제어를 통해 역삼투 해수담수화 공정에서 막의 성능 유지 시 사용 가능하다. 이에 본 연구에서는 해수 수질 인자 및 공정 운전 인자에 기반하여 막 저항 값을 예측하는 알고리즘을 제안한다. 알고리즘은 해수담수화 플랜트의 운전 데이터에 기반하여 인자들과 막 저항 값 사이의 관계를 학습하고 검증과정을 거쳐 막 오염 발생 시점을 사전에 예측하는 방식으로 개발되었다. 예측 정확도를 분석하고 개발된 알고리즘의 수정을 통해 예측 정확도 향상을 위한 연구를 진행하였다.
        8.
        2020.06 KCI 등재 서비스 종료(열람 제한)
        This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.