In this study, experimental research was carried out to evaluate the structural performance of high strength R/C interior beam-column joints regions, with or without the shear reinforcement. Specimens designed by the interior beam-column joint regions without the shear reinforcement of existing reinforced concrete building showed a unstable mode of failure and an decrease in load-carrying capacity and energy dissipation capacity and ductility ratio.
Under cyclic loading, the structural performance of reinforced concrete (RC) beam-column connections is significantly affected by the bond-slip of beam re-bars. In the present study, a bond-slip model was developed to evaluate bond-slip of beam re-bars in beam-column joints. The prediction of the proposed model agreed well with the bond strength degradation and bond-slip in the beam-column joints.
In this study, shear assessment equation of reinforced concrete interior beam-column joints without shear reinforcement using high ductile fiber reinforced mortar based on the test results was proposed. Suggested equation was proposed to modify Hegger's seismic design equation. It was reflected the effect of high ductile fiber incorporated
In this study, experimental research was carried out to evaluate and improve the constructability and structural performance of high strength R/C interior beam-column joints regions, with or without the shear reinforcement, using high ductile fiber-reinforced mortar. Specimens designed by retrofitting the interior beam-column joint regions of existing reinforced concrete building showed a stable mode of failure and an increase in load-carrying capacity due to the effect of enhancing dispersion of crack control at the time of initial loading and bridging of fiber from retrofitting new high ductile materials during testing.
Under cyclic loading, the shear capacity of reinforced concrete (RC) beam-column connections is significantly decreased by the joint bond-slip and shear cracking as deformation increases. In the present study, Joint shear strength model on the basis of bond-slip was developed to evaluate deformability at the joint shear failure.